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Introduction et motivation

Cette thèse porte sur les techniques algorithmiques pour résoudre des instances uniformes
du problème du sac à dos exact (subset sum) et du décodage à distance d’un code linéaire
aléatoire.
Étant donné un ensemble de nombres entiers ai de taille maximale M = log2(maxi ai), le

subset sum pose la question de savoir s’il existe un sous-ensemble de nombres entiers dont
la somme est égale à une valeur fixée. Il est prouvé NP-complet. Le ratio entre le nombre
d’entiers donné et la taille maximale des éléments,M , est dénommé densité. Ce problème offre
une alternative aux problèmes utilisés classiquement en cryptographie comme par exemple
les problèmes basés sur la factorisation et le logarithme discret. Le problème admet une
description simple et le calcul d’une somme de nombres entiers est facile à effectuer. De plus,
contrairement à d’autres problèmes en théorie des nombres, aucun algorithme quantique n’est
connu pour résoudre ce problème en temps polynomial.
À l’aide du subset sum, il est possible de construire des fonctions à sens unique, des généra-

teurs de nombres pseudo aléatoires et des schémas de chiffrement à clé publique dont la
sécurité est basé sur la difficulté du problème dans le cas moyen.
Dans les années 70 et 80, des chercheurs en cryptographie ont proposé des schémas de

chiffrement à clé publiques dont la sécurité est basée directement sur le subset sum. Rapi-
dement après la publication de ces résultats, des attaques ont été présentées. La principale
faiblesse provient de la structure nécessaire à un déchiffrement efficace ou d’une faible densité,
inférieure à un. Le cas le plus difficile apparaît pour un sac à dos uniforme de densité proche
de un, ce qui est le cas pour nos études. Nous présentons une nouvelle technique algorithmique
générique, supposant que la structure du problème est correctement masquée.
Outre les schémas de chiffrement, le subset sum permet des constructions efficaces de fonc-

tions de hachage et de générateurs de nombres pseudo aléatoires. Ces derniers peuvent être
utilisés pour implémenter des schémas de chiffrement à clé publique, des protocoles à divulga-
tion nulle de connaissance, des schémas d’identification et des schémas de signature numérique.
Leur sécurité repose sur la difficulté du subset sum dans le cas moyen. Il existe également des
cryptosystèmes basés sur les réseaux euclidiens qui sont prouvés sûrs tant que le subset sum
dans le cas moyen est difficile.
Le subset sum apparait également dans autres contextes en cryptographie. En effet, les

problèmes de décodage peuvent être vus comme une version vectorielle du subset sum; les
techniques utilisées pour la résolution du second peuvent donc s’appliquer aux premiers. Ces
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problèmes, et plus particulièrement le problème du décodage borné dans un code aléatoire,
sont à la base de plusieurs schémas cryptographiques. Ce problème est prouvé NP-complet
dans le cas d’un code binaire linéaire et aucun algorithme quantique n’est connu pour le
résoudre en temps polynomial. Ce problème est l’un des candidats les plus prometteurs
pour construire des systèmes cryptographiques sûr en présence d’un ordinateur quantique. Il
admet des schémas de chiffrement à clé publique et de signature numérique et des fonctions
de hachage.
La sécurité de presque tous les cryptosystèmes basés sur les codes correcteurs s’appuie sur

la difficulté du décodage. La clé publique appartient à un code qui est indistinguable d’un
code aléatoire. Pour permettre un décodage efficace pour le destinataire, la clé secrète est
bien structurée. Par une transformation linéaire on obtient la clé publique qui déguise cette
structure et rend le code d’apparence aléatoire. Un attaquant a deux options. Premièrement,
il peut essayer de distinguer le code perturbé d’un code aléatoire et révéler la structure.
Deuxièmement, il peut appliquer un algorithme générique qui résout le problème de décodage
d’un code aléatoire.
Il existe des familles de codes dont la structure peut être masquée efficacement face aux

attaques connues. Nous allons alors viser à améliorer les algorithmes génériques qui résolvent
le problème de décodage d’un code aléatoire. La méthode la plus efficace est le décodage par
ensemble d’information.
Un problème proche du décodage dans les codes linéaires aléatoires est le problème

’learning-parity-with-noise’ (LPN) qui est fréquemment utilisé en cryptographie [Ale03, HB01,
KKC+01]. Le problème de recherche LPN est un problème de décodage dans un code donné.
Regev a montré [Reg05] que la version décisionnelle, un outil utile pour des constructions
cryptographiques, est équivalent au problème de recherche LPN. Il est alors équivalent au
problème de décodage d’un code linéaire aléatoire.
Le problème ’learning-with-error’ (LWE) introduit par Regev [Reg05] est une généralisation

du problème LPN au cas de codes définis sur un plus grand corps. Les algorithmes présentés
pourraient être également adaptés à ce problème (de façon similaire à [CG90, Pet10]).
Le problème du décodage borné dans un code linéaire aléatoire est donc à la base de

l’ensemble de la cryptographie fondée sur les codes correcteurs d’erreurs et sur les problèmes
LPN et LWE. Étudier la complexité de ce problème permet donc de déterminer les paramètres
qui assurent la sécurité de ces constructions cryptographiques.

Résultats et organisation de la thèse

Ce mémoire se divise en trois parties. La première partie est un préliminaire algorithmique qui
présente les techniques de recherche de collisions dont nous avons besoin dans la suite. Elle
introduit le problème des k-sommes qui est lié au problème de la somme de sous-ensembles.
Les algorithmes bien connus pour sa résolution constituent des exemples d’application des
techniques de recherche de collisions.

2
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La deuxième partie est dédiée au subset sum. La technique générique la plus efficace pour
résoudre ce problème pour un ensemble de n éléments était un algorithme par Shamir and
Schroeppel qui nécessite un temps 2

n
2 et de la mémoire 2

n
4 . En 2010, Howgrave-Graham et

Joux ont présenté une nouvelle technique, nommé la technique de représentation. Le nouvel
algorithme probabiliste tourne on temps 20.337n en utilisant 20.311n de mémoire en moyen
pour les instances aléatoires de densité un. Nous présentons une analyse plus détaillée de
l’algorithme et proposons un nombre variable de niveaux dans le cas du sac à dos déséquilibré
ou de passer au sac à dos complémentaire. Des améliorations par rapport à la mémoire nous
permettons de proposer un algorithme qui nécessite une mémoire heuristique de 20.272n et
garde le même temps asymptotique.
La technique de représentation peut être généralisée en permettant une petite fraction

de coefficients négatifs dans les éléments intermédiaires de l’algorithme. Suite à cette
généralisation nous proposons un algorithme probabiliste avec un temps de calcul réduit.
L’algorithme tourne en temps asymptotique 20.291n et utilise 20.291n de mémoire. Le résultat
a mené à la publication [BCJ11]. La mémoire peut être réduite par la même observation que
précédemment et descend à 20.279n sous hypothèses heuristiques.

La partie II est organisée comme suit. Le chapitre 2 présente le subset sum et définit le cas
intéressant pour nos études. Nous offrons un tour d’horizon des primitives cryptographiques
basées sur le subset sum et des schémas dont la sécurité dépend de ce problème. Les chapitres
suivants présentent les techniques algorithmiques génériques pour résoudre le subset sum
pour les instances aléatoire dans le pire des cas, de densité un. Nous distinguons entre les
attaques classiques par paradoxe d’anniversaire comme l’algorithme par Shamir et Schroeppel
(chapitre 3) et les algorithmes qui utilisent la méthode récente des représentations dans sa
forme basique (chapter 4) et généralisée (chapter 5). Le chapitre 6 présente un algorithme
qui utilise une mémoire constante qui fait partie de la publication [BCJ11]. Les chapitres 2
et 3 sont inspirés en partie du chapitre 8 dans [Jou09]. Les chapitres 4 et 5 sont basés sur les
publications [HGJ10] et [BCJ11], respectivement.

La troisième partie présente une amélioration du décodage par ensemble d’information qui
est la méthode la plus efficace pour résoudre le problème de décodage par syndrome d’un
code aléatoire. Une méthode classique dans le pire cas a un temps asymptotique de 20.05564n

pour le décodage à distance moitié et un code a longueur n. Le pire cas est un code d’un
ratio d’information qui maximise le temps de calcul pour résoudre le problème de décodage.
L’algorithme a été amélioré récemment par ’ball-collision decoding’. L’algorithme tourne en
temps 20.05559n et utilise 20.0148n de mémoire.

L’application de la technique de représentation permet de trouver la solution en temps
20.05363n avec une petite augmentation en mémoire qui est de l’ordre de 20.0215n. Nous
proposons une méthode qui permet de diminuer la mémoire heuristiquement à 20.0139n.
L’algorithme n’exploite pas au total la puissance de la technique basée sur les représen-

tations. En utilisant notre technique de représentation généralisée nous pouvons nettement
baisser le temps asymptotique. Nous permettons des intersections de positions de bits ana-
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logue au cas du subset sum sur les nombres entiers. Le nouvel algorithme permet de résoudre
le problème de décodage par syndrome d’un code aléatoire linéaire en temps 20.04933n en
utilisant 20.0307n de mémoire. Le résultat est publié dans [BJMM12]. La mémoire peut être
réduite à 20.0306n heuristiquement.
La partie III est organisée comme suit. Le chapitre 8 fait une introduction au codes cor-

recteurs d’erreurs linéaires et présente des schémas cryptographiques populaires basés sur les
codes. Le chapitre 9 introduit la méthode du décodage par ensemble d’information générale et
explique les techniques précédentes. Nous présentons ensuite (chapitre 10) comment on peut
améliorer le décodage par ensemble d’information en utilisant le technique de représentations
généralisée.
Le premier chapitre est inspiré par [Bar98, Pet11] et les chapitres 9 et 10 sont basés sur la

publication [BJMM12].
Nous présentons des approximations asymptotiques de termes binomiaux qui nous per-

mettent d’évaluer la complexité asymptotiques des algorithmes dans l’appendice A. Le code
octave qui nous permet d’évaluer la complexité se trouve dans l’appendice B. Les deux sections
suivantes résument les définitions, algorithmes et résultats importants du mémoire.

Comment résoudre le subset sum uniforme de densité un

Nous définissons le problème subset-sum qui est aussi appelé le problème de la somme des
sous-ensembles comme suit.

Definition 0.1 (Problème subset-sum)
Étant donnés n nombres entiers ai et un entier S, trouver une solution x = (x1, .., xn) ∈
{0, 1}n tel que

a · x :=
n∑
i=1

ai xi = S (0.1)

ou montre qu’aucune solution n’existe.

Le problème est NP-complet [Kar72] dans sa forme décisionnelle et NP-difficile dans sa
forme calculatoire. Nous dénotons par M la taille maximale des nombres entiers ai,
M = log2(maxi ai). Le problème est aussi nommé problème du sac à dos (exact) en cryp-
tographie. Les ai sont les poids ou les éléments du sac à dos.
La difficulté pour résoudre un subset sum dépend d’une propriété du sac à dos qui est la
densité.

Definition 0.2 (Densité)
La proportion entre les éléments du sac à dos a = (a1, .., an) et leur taille maximale M est la
densité:

d :=
n

log2(maxi ai)
. (0.2)

Nous nous intéressons spécialement aux sacs à dos sans structure. Ces sacs à dos sont
nommés des sacs à dos uniformes.
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Definition 0.3 (Sac à dos uniforme)
Nous choisissons les poids ai uniformément et aléatoirement dans l’intervalle [1, b2

n
d c]. La

solution x est choisie uniformément et aléatoirement dans {0, 1}n. La sous-somme S =∑n
i=1 aixi est un sac à dos uniforme avec solution.

Impagliazzo et Naor ont montré [IN96, IN89] que le problème subset sum pour une instance
uniforme est le plus difficile si la densité est un. Pour un sac à dos uniforme nous pouvons
compter les nombres de sous-sommes possibles de taille `. Il y en a

(
n
`

)
ce qui est maximal

pour ` = dn
2e. Nous supposons alors que la densité est un et que la solution a un poids

` ≈ dn
2e. Pour résoudre le subset sum nous allons passer au sac à dos modulaire en calculant

a · x :=
n∑
i=1

ai xi ≡ S mod M

pour un grand nombre entier M où les ai et S sont dans ZM .

Algorithmes simples. Pour trouver la solution du subset sum, nous pouvons énumérer tous
vecteurs x ∈ {0, 1}n et calculer la sous-somme correspondant à chaque vecteur. L’algorithme
nécessite 2n calculs de sous-sommes dans le pire cas et garde qu’un élément en mémoire.
On peut réduire le temps de calcul si on partage les éléments en deux ensembles de même

taille [HS74]. Nous calculons toutes les 2b
n
2
c sommes

∑bn
2
c

i=1 ai xi et les mettons dans une liste
L1. Une recherche de collision avec les sommes S −

∑n
bn
2
c+1 ai xi dans une deuxième liste L2

permet de trouver la solution. Car une collision correspond à l’équation

bn
2
c∑

i=1

ai xi = S −
n∑

bn
2
c+1

ai xi

chaque collision est une solution du subset sum. Les listes contiennent à peu près 2
n
2 éléments.

Le coût pour la création des listes et la recherche de collisions entre deux listes triées se fait
en temps O

(
n 2

n
2

)
(détails dans la section 1.1).

Algorithme par Schroeppel et Shamir sous forme heuristique. On peut réduire la mémoire
comme observé par Shamir et Schroeppel [SS81]. Leur algorithme déterministe résout toutes
instances en temps O

(
n 2

n
2

)
en utilisant O

(
n 2

n
4

)
de mémoire (section 3.1). Nous présentons

une version heuristique qui a la même complexité. Pour des rares cas, comme un sac à dos
dont tous éléments sont zero, la complexité peut être supérieure. L’algorithme donne une
bonne introduction à la technique que nous allons utiliser pour améliorer le temps.
Nous supposons que la solution a un poids n

2 et que 4 |n. La solution se découpe en quatre
morceaux tel que

bn
4
c∑

i=0

aixi +

bn
2
c∑

i=bn
4
c+1

aixi = S − (

b 3n
4
c∑

i=bn
2
c+1

aixi +
n∑

i=b 3n
4
cc+1

aixi) .
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Si nous énumérons toutes les sous-sommes possibles d’un quart des éléments, nous allons
trouver la solution. Cette idée est par contre trop couteuse. Pour un nombre entier M , nous
observons que

bn
4
c∑

i=0

aixi +

bn
2
c∑

i=bn
4
c+1

aixi ≡ S − (

b 3n
4
c∑

i=bn
2
c+1

aixi +
n∑

i=b 3n
4
cc+1

aixi) ≡ R mod M

pour une solution et un entier R ∈ ZM . Car nous ne connaissons pas R, il nous faut les essayer
tous.
L’algorithme consiste en les étapes suivantes. Nous choisissons quatre sous-ensembles dis-

joints d’éléments du sac à dos chaque contenant un quart d’éléments. Pour chaque ensemble
nous calculons toutes sous-sommes σi possibles et les mettons dans des listes Y1, ..,Y4. Les
listes ont une longueur 2

n
4 . Nous choisissons un nombre R aléatoire. La prochaine étape unit

les listes Y1 et Y2 par recherche de collision. Elle crée une liste L1 d’éléments σ1 + σ2 où
σ1 + σ2 ≡ R mod M : Nous trions Y1 par rapport à ses valeurs modulo M et cherchons pour
chaque élément σ2 ∈ Y2 un élément de valeur R− σ2 dans la liste triée Y1.
Nous faisons de même pour les listes Y3 et Y4 et créons des éléments σ3 + σ4 dans une

liste L2. Étant donné un sac à dos uniforme et un M qui est inférieur ou égal à la taille
des éléments nous pouvons supposer que les sous-sommes sont uniformément distribuées dans
ZM . Les listes L1 et L2 ont une longueur 2

n
2 /M . Pour minimiser la mémoire et le temps de

calcul, nous choisissons M de tailles 2
n
4 à peu près. La dernière étape cherche des collisions

entre L1 et L2 sur les entiers. Pour cela nous trions les deux listes en ordre croissante. A
chaque tour nous comparons deux éléments commençant avec le premier de la liste L1 et le
dernier le la liste L2. Il y a trois possibilités: Si σ1 +σ2 ∈ L1 est inférieur à S−(σ3 +σ4) ∈ L2,
nous choisissons le prochain élément de la liste L1. Si σ1 + σ2 ∈ L1 > S − (σ3 + σ4), nous
changeons pour le prochain élément dans la liste L2. Dans le cas d’égalité nous avons trouvé
une collision qui est une solution du subset sum.
L’algorithme trie et mémorise des listes de taille 2

n
4 . La première étape trouve un nombre

attendue de 2
n
4 éléments qui sont mis dans deux listes. L’algorithme nécessite alors O

(
n
4 2

n
4

)
de mémoire. La dernière étape trie deux listes à 2

n
4 éléments et exécute 2 · 2

n
4 calculs au

maximum pour trouver une solution. Il nous faut répéter avec un R différent si la solution
n’est pas trouvée. Le nombre des répétitions dans le pire cas est 2

n
4 . Le temps total de

l’algorithme devient O
(
n 2

n
2

)
.

La technique simple des représentations. En 2010, Howgrave-Graham et Joux ont proposé
un nouvel algorithme [HGJ10] pour résoudre des instances uniformes du problème subset
sum de densité un. La densité un implique qu’il y a une seule (ou très peu de) solutions.
La nouvelle idée est de choisir des sous-ensembles des éléments du sac à dos non disjoints.
Nous définissons une représentation d’une solution de poids ` comme un couple de vecteurs
(y, z) ∈ {0, 1}n × {0, 1}n de poids `/2.
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La figure 0.1 montre une telle représentation.

wt(x) = `

x

wt(y) = `/2
y

wt(z) = `/2

z

Figure 0.1.: Une représentation (y, z) d’une solution x. Les zones rayées montrent les positions
non-nulles.

Les vecteurs y, z sont une solution partielle et le nombre des représentations dépend du
nombre de façon de choisir b`/2c positions de valeur un dans `:

NHGJ =

{
2 ·
(

`
(`−1)/2

)
pour ` impair( `

`
2

)
pour ` pair

qui est de l’ordre O
(
2`
)
pour grand n et `.

Nous simplifions la présentation en supposant que 2|`. L’algorithme cherche une représen-
tation qui satisfait la contrainte suivante:

a · y ≡ R mod M et
a · z ≡ S −R mod M

(0.3)

pour un nombre entier M et un élément R aléatoirement choisi dans ZM .
Supposons que nous avons deux listes L1,L2 de sommes a·y =

∑n
i=1 aiyi et a·z =

∑n
i=1 aizi

satisfaisant (0.3) tel que y, z ont un poids `/2 et sont choisis indépendamment et aléatoirement
dans {0, 1}n. Chaque couple d’éléments des listes L1 et L2 satisfait

a · y + a · z ≡ S mod M .

Si nous en trouvons un pour lequel l’égalité est vraie sur les entiers et pour lequel le poids de
y + z est `, nous avons trouvé une représentation de la solution. La solution est donnée par
y + z.
Nous avons transformé le problème d’origine de deux manières. Premièrement, nous ne cher-

chons plus directement la solution unique mais nous cherchons une représentation parmi un
nombre exponentiel. Nous ajoutons des degrés de liberté et augmentons l’espace de recherche.
Pour réduire le coût, nous ajoutons les contraintes modulaires. Deuxièmement, les éléments
dans L1,L2 sont eux-mêmes des solutions de poids `/2 de deux problèmes du sac à dos uni-
forme donnés dans (0.3). Ces solutions peuvent être trouvées par une technique classique
comme l’algorithme par Shamir et Schroeppel ou en appliquant la technique des représenta-
tions encore une fois.
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L’algorithme par Howgrave-Graham et Joux a deux niveaux de représentation et tourne
en temps Õ

(
20.337n

)
en utilisant Õ

(
20.311n

)
de mémoire. Le chapitre 4 explique l’idée et

l’algorithme en détail.

La technique des représentations généralisée. L’idée de représenter la solution d’un sac à
dos par deux vecteurs binaires de même taille comme la solution peut être généralisée. Nous
proposons de décomposer la solution en deux vecteurs en coefficients dans {−1, 0, 1}. En
ajoutant quelques coefficients −1, nous cherchons des solutions partielles de poids légèrement
plus élevées. Nous gagnons plus de degrés de liberté car le nombre des représentations aug-
mente. Nous pouvons alors imposer des contraintes modulaires plus fortes et diminuer la taille
des listes.
Nous choisissons un paramètre α tel que αn est le nombre des positions à valeur −1 par

solution partielle. Une représentation d’une solution x est un couple (y, z) ∈ {−1, 0, 1}n ×
{−1, 0, 1}n tel que x = y + z. Les vecteurs y, z ont le même poids. Ils contiennent `/2 + αn

1 et αn -1 chacun.
La figure 0.2 montre une représentation possible. Le nombre des représentations se calcule

par le nombre de façon de décomposer chaque xi ∈ {1, 0} de la solution en un couple (yi, zi) tel
que yi + zi = xi. Nous pouvons décomposer les ` 1 en couples (0, 1) ou (1, 0) se qui peut être
fait en

(
`
`/2

)
manières différentes. Les n − ` 0 sont représentés par (0, 0), (1,−1) ou (−1, 1).

Nous choisissons αn couples (1,−1) et (−1, 1). Le coefficient multinomial
(

n−`
αn,αn,n−`−2αn

)
compte le nombre des décompositions possibles des zéros. Le nombre total des représentation
est:

NBCJ =

(
`

`/2

)(
n− `

αn, αn, n− `− 2αn

)
. (0.4)

Par rapport à la technique des représentations basique, le nombre augmente pour α > 0 du
deuxième facteur dans (0.4). Les contraintes modulaires pour les solutions partielles sont
choisies de l’ordre du nombre des représentations. Cela nous permet de réduire les listes in-
termédiaires en garantissant une représentation en moyenne. Comme le nombre des représen-
tations augmente, nous pouvons alors augmenter les contraintes et réduire encore plus les
listes.
Notre algorithme a un temps de calcul asymptotique inférieur aux autres algorithmes. Il a

une complexité Õ
(
20.291n

)
en temps et mémoire comme détaillé dans le chapitre 5.

wt(x) = `

x

wt(y) = `/2 + 2αn
y

wt(z) = `/2 + 2αn

z

Figure 0.2.: Une représentation de la solution x = y + z. Les zones rayées montrent les positions
des 1 et les zones pointées représentent les positions des -1.
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Application de la technique des représentations généralisée

Les technique utilisées pour le problème de subset sum sur les nombres entiers peuvent être
appliquées dans le domaine des codes linéaires. La sécurité des schémas cryptographiques
basés sur les codes linéaires dépend de la difficulté du problème suivant.

Definition 0.4 (Problème de décodage par syndrome)
Étant donné une matrice de parité H ∈ F(n−k)×n

2 d’un code linéaire, un syndrome s ∈ Fn−k2

et un entier positive ω, le problème consiste en trouvant un vecteur e ∈ Fn2 de poids ω tel que
Het = s.

La version décisionnelle est NP-complète [BMvT78] pour des codes binaires linéaires. Il est
équivalent [LDW94] au problème de décodage borné.

Definition 0.5 (Problème de décodage borné)
Étant donné une matrice génératrice G ∈ Fk×n2 d’un code binaire linéaire C, un vecteur
aléatoire y ∈ Fn2 et un entier positive ω, le problème consiste à trouver un vecteur e ∈ Fn2 de
poids au plus ω tel que y + e ∈ C.

La méthode la plus efficace pour résoudre ces problèmes pour un code aléatoire est le
décodage par ensemble d’information (information-set decoding, ISD). Nous utilisons le cadre
du ISD généralisé comme introduit par Finiasz et Sendrier [FS09] en 2009. Les données en
entrée d’un algorithme ISD sont une matrice de parité H ∈ F(n−k)×n

2 d’un code binaire linéaire
en longueur n, dimension k et distance minimale d et un syndrome s = He. Le vecteur e est
inconnu et a un poids ω := wt(e) = bd−1

2 c.
ISD est un algorithme randomisé avec deux étapes principales qui sont itérées jusqu’à ce

que le vecteur e soit trouvé. La première partie consiste en une transformation linéaire de
la matrice de parité qui dépend d’une permutation aléatoire des colonnes de la matrice. La
deuxième partie de l’algorithme exécute une recherche.
La matrice de sortie de la première partie est en forme systématique, comme montré dans

la figure 0.3. Elle est obtenue par multiplication avec une matrice de permutation P ∈ Fn×n2

et une matrice de transformation inversible T ∈ F(n−k)×(n−k)
2 : H̃ = THP .

H̃ =

0

︷ ︸︸ ︷k + ` ︷ ︸︸ ︷n− k − ` ︷︸︸︷ `︷
︸︸

︷ n− k − `︸ ︷︷ ︸
p

︸︷︷︸
ω − p

Q[`]

In−k−`Q[`+1,n−k]

Figure 0.3.: Matrice de parité H̃ sous forme systématique.
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Nous utilisons les notations suivantes: QI dénote la projection de Q aux lignes définie par
l’ensemble des indices I ⊂ {1, . . . , n − k}. Analoguement, QI dénote la projection de Q sur
les colonnes. Nous définissons [`] := {1, . . . , `} et [`, n− k] := {`, . . . , n− k}.
Avec s̃ := T s le nouveau problème est de trouver un vecteur ẽ de poids ω qui satisfait

H̃ ẽ = s̃. En appliquant l’inverse des transformations nous retrouvons la solution e = P ẽ au
problème de départ.
Pendant la phase de recherche, nous énumérons tous les vecteurs avec une distribution de

poids spécifique. Les vecteurs peuvent être décomposés: ẽ = (ẽ1, ẽ2) ∈ Fk+`
2 × Fn−k−`2 ou

wt(ẽ1) = p et wt(ẽ2) = ω− p. La figure 0.4 montre la distribution du poids. La permutation

|ẽ1| = p |ẽ2| = ω − p
k + ` n− k − `

Figure 0.4.: Distribution du poids de ẽ.

disperse les coordonnées non-nulles aléatoirement. La probabilité qu’un vecteur ẽ possède la
structure recherchée est

P =

(
k+l
p

)(
n−k−l
ω−p

)(
n
ω

) . (0.5)

L’inverse de la probabilité P−1 correspond au nombre d’itérations attendu pour trouver le
bon vecteur ẽ.
Grâce à la forme systématique de H̃, nous voyons que

H̃ ẽ =

[
Q[`]ẽ1

Q[`+1,n−k]ẽ1 + ẽ2

]
= s̃ .

Cela nous permet de chercher des candidats ẽ1 et de choisir ẽ2 en cohérence avec le syndrome.
Premièrement, nous recherchons le vecteur tronqué ẽ1 ∈ Fk+`

2 de poids p. Nous énumérons
tous les ẽ1 tels que Q[`]ẽ1 = s + [`] avec Q[`] ∈ F`×(k+`)

2 . Pour trouver ẽ = (ẽ1, ẽ2), nous
choisissons ẽ2 égal aux derniers n − k − ` coordonnées de Qẽ1 + s̃. Le but de la phase de
recherche est de trouver les vecteurs ẽ1 efficacement. Nous présentons dans la suite une tech-
nique classique, l’algorithme de Stern, et notre nouvel algorithme qui utilise le technique des
représentations généralisée. Les chapitres 9 et 10 donnent plus de détails sur les algorithmes
d’ISD précédents et récents.

Algorithme de Stern – ISD classique Stern [Ste89] propose de chercher des vecteurs ẽ avec
p positions non-nulles dans ses premières k positions, des zéros dans les ` positions suivantes
et qui ont le plus de leur poids dans les derniers n−k−` coordonnées. Il exécute une recherche
de collisions pour trouver les p colonnes de H̃ telles que leur sommes est égale au syndrome
sur les premières ` coordonnées (représenté par ẽ1 dans le paragraphe précédent).

10



Contents

La figure 0.5 présente la distribution de poids des vecteur ẽ. Les entiers p et ` sont des
paramètres d’optimisation. Nous partageons les colonnes de Q[`], dénotées par qi, en deux

p/2 p/2 0 ω − p
k/2 k/2 ` n− k − `

Figure 0.5.: Distribution de poids de ẽ dans l’algorithme de Stern.

ensembles de taille k/2:

Q1 = {qi | i ∈ [1,
k

2
]} and Q2 = {qi | i ∈ [

k

2
+ 1, k]} .

Les ensembles des indices I1 et I2 correspondent aux colonnes dans Q1 et Q2, respectivement.
Le problème de collisions est le suivant:∑

i∈I1

qi = s̃[`] +
∑
i∈I2

qi (0.6)

avec I1 ⊂
[
1, k2

]
, I2 ⊂

[
k
2 + 1, k

]
et |I1| = |I2| = p

2 .

L’algorithme crée des listes L1,L2 contenant toutes les sommes possibles des cotés gauche
et droit de (0.6). Les listes contiennent L =

((k+`)/2
p/2

)
éléments chacunes. Une collisions entre

les listes est équivalent à un ensemble I = I1 ∪ I2 de p colonnes dont la somme est égale au
syndrome sur les premières ` coordonnées. Nous attendons L2/2` collisions en moyenne. Si
Q[`+1,n−k]ẽ1 + s̃[`] a un poids au moins de ω − p nous choisissons les bonnes colonnes de H̃
parmi les n− k − ` dernières pour trouver ẽ.

Le temps de calcul de chaque itération est donné par la taille des listes et le nombre de
collisions:

TStern = max(

(
k/2

p/2

)
,

(k/2
p/2

)2
2`

) .

La probabilité que nous ayons choisi la bonne permutation dans la première partie de
l’algorithme est

PStern =

(k/2
p/2

)2(n−k−`
ω−p

)(
n
ω

) .

Le temps de calcul total attendu est

TStern · P−1
Stern .

La complexité peut être minimisée sous les contraintes que 0 ≤ p ≤ ω et 0 ≤ ` ≤ n−k−ω+p.
Nous obtenons un temps de calcul du pire cas pour le décodage borné de 20.05562n en utilisant
20.0134n de mémoire.
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Application de la technique des représentations généralisée Nous désirons résoudre le
problème de collision (0.6): ∑

i∈I1

qi = s̃[`] +
∑
i∈I2

qi .

Dans l’algorithme de Stern, les ensembles des indices I1, I2 sont choisis disjoints. Chaque
solution I a une représentation unique (I1, I2) et est donnée par I1 ∪ I2. Nous proposons de
choisir les indices dans I1 et I2 parmi l’intervalle complet et de permettre quelques même
colonnes dans I1 et I2. Les ensembles ont une taille |I1| = |I2| = p

2 + ε pour un nouveau
paramètre ε > 0 et nous énumérons ceux qui ont exactement ε colonnes au commun. Chaque
solution peut être écrite de plusieurs manières comme I = I1∆I2 := I1 ∪ I2 \ (I1 ∩ I2) comme
montré dans la figure 0.6.

|I| = p

e

|I1| = p/2 + ε
e1

|I2| = p/2 + ε

ε

e2

Figure 0.6.: Décomposition d’un ensemble des indices I en deux.

Le nombre des représentations est

N =

(
p

p/2

)(
k + `− p

ε

)
. (0.7)

Le vecteur e est creux pour des codes aléatoires et p est petit en comparaison de k + ` ce
qui veut dire que le nombre des représentations N augmente vite pour un petit ε à cause du
deuxième facteur dans (0.7).
Comme plein de couples (I1, I2) produisent la même solution, nous pouvons ajouter une

contrainte aux ensembles d’indices. Cela réduit le nombre d’éléments parmi lesquels nous
cherchons la solution et donc réduit la taille de listes construites dans l’algorithme. Nous
supposons que les sommes des colonnes sont des valeurs uniformément distribuées dans F`2
car la matrice donnée est indistinguable à une matrice aléatoire.
La probabilité que

(
∑
i∈I1

qi)[r] = t (0.8)

pour un vecteur aléatoire t ∈ Fr2 est 2−r pour 0 ≤ r ≤ `. Si nous choisissons

r ≈ log2N ,

nous pouvons nous attendre à ce qu’un ensemble des indices I1, qui correspond à une représen-
tation (I1, I2), satisfasse (0.8).
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L’ensemble I \ I1 satisfait alors

(
∑
i∈I\I1

qi)[r] = s[r] + t . (0.9)

Inversement, pour des ensembles d’indices arbitraires (J1, J2) ∈ L1 × L2 satisfaisant (0.8)
et (0.9), nous savons que

(
∑

i∈J1∪J2

qi)[r] = s[r] .

Il nous reste à tester si l’égalité est satisfaite sur toutes les ` coordonnées, ce qui est vrai
avec une probabilité de 2−r, et si |J1 ∩ J2| = ε. Dans ce cas nous avons trouvé une solution
I = J1 ∪ J2 \ (J1 ∩ J2) et (J1, J2) est une des représentations. Pour quelques cibles t il peut
arriver qu’aucune représentation ne satisfasse (0.8) et (0.9). Dans ces cas, il nous faut choisir
un nouveau vecteur de cible et répéter l’algorithme.
La section 10.2 explique la nouvelle technique et l’algorithme en détail. Notre algorithme

atteint un temps de calcul pour le décodage borné de 20.04933n et utilise 20.0307n de mémoire.
Le temps de calcul est toujours plus court comme nous le montrons dans la section 10.3.
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Introduction and motivation

The focus of this thesis are algorithmic techniques to solve the random subset-sum problem
over the integers and the syndrome-decoding problem in a random linear code.
Given a large set of n integers ai of maximal size M = log2(maxi ai), the subset-sum

problem asks whether there exists a subset that sums up to a fixed value. It is proven to be
NP-complete. The ratio between the number of elements and their maximal size M is called
density. This mathematical problem provides an alternative to other hard problems used in
cryptography such as factoring or the discrete logarithms. Its description is simple and the
computation of sums of integers is an easy task. Furthermore, in contrast to widely used
number-theoretic problems no polynomial-time quantum algorithm is known.
One can construct one-way functions, pseudo-random generators and secure private-key

cryptography schemes from the hardness assumption of an average-case subset-sum problem.
Especially, in the 1970s and 1980s cryptographers showed an interest in designing public-key
encryption schemes where security was directly based on this problem. However, extensive
research was undertaken and the security of the proposed schemes was undermined quickly
after the proposal. The weakness was due to a badly hidden trapdoor needed for an efficient
decryption or due to a low density, that is, a density less than one. The provably hardest case
occurs for a random subset sum problem of density close to one which is the case we study.
We present a new generic algorithmic technique that assumes no underlying structure in the
set of elements.
Aside from the public-key encryption, the subset-sum problem allows efficient construc-

tions of pseudo-random generators and universal one-way hash-functions that can be used
to implement private-key encryption, zero-knowledge protocols, identification schemes and
digital-signature schemes. Their intractability is given by the hardness of the subset-sum
problem. There are also cryptosystems based on lattice problems which are provably as
secure as the hardness of the subset-sum problem in the average case.
Apart from its form over the integers, the subset-sum problem appears in other places in

cryptography. Decoding problems can be seen as a vectorial subset-sum problem. Especially
the bounded-distance-decoding problem in a random code permits public-key encryption,
McEliece’s and Niederreiter’s encryption scheme, as well as digital signatures, namely the
CFS and the parallel-CFS signature scheme. The generic tools to solve the integer subset
sum problem apply and lead to advanced algorithms for solving the underlying decoding
problem as we present in part III.
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Decoding a random linear code is one of the most promising problems for the design of
cryptosystems that are secure even in the presence of quantum computers. The problem is
proven to be NP-complete for binary linear codes and no polynomial time quantum algorithm
is known. The security of almost all code-based cryptosystems, for example, the McEliece
cryptosystem, relies on the fact that random linear codes are hard to decode. The public key
belongs to a code that is supposed to be indistinguishable from a random code. To permit
an efficient decoding on the receivers end, one needs to embed a trapdoor. Starting with a
well-structured secret code C, we transform it linearly into a code C ′ that shows no structure.
An attacker has two choices. First, she can try to distinguish the scrambled code C ′, derived

from the well-structured code C, from a random code by revealing the underlying structure.
Second, she directly tries to run a generic decoding algorithm on the scrambled code C ′ thus
attacking the random decoding problem. Research shows that there are code families for
which the structure can be efficiently disguised. We thus focus on decoding random linear
codes to estimate the difficulty of the adversary.
Closely related to decoding random linear codes is the learning-parity-with-noise problem

(LPN) that is frequently used in cryptography [Ale03, HB01, KKC+01]. In LPN, one directly
starts with a random linear code C and the LPN search problem is a decoding problem in C.
It was shown in [Reg05] that the popular LPN decision variant, a very useful tool for many
cryptographic constructions, is equivalent to the LPN search problem. This means that is
equivalent to decoding a random linear code.
The learning-with-error problem (LWE) by Regev [Reg05] is a generalization of LPN to

codes over a larger field. The presented decoding algorithms could be adjusted to work for
these larger fields (similar to what was done in [CG90, Pet10]). Since the decoding problem lies
at the the heart of coding-based and LPN/LWE-based cryptography it is necessary to study
its complexity in order to define proper security parameters for cryptographic constructions.

Results and organization

This thesis is divided into three parts. The first part presents algorithmic techniques for
collision search which is an important tool that we will use later. We review the k-sum
problem which is related to the subset-sum problem. The well-known algorithms for its
solution represent a first example of an application of the collisions search technique. The
second and third part present recent research to solve the subset-sum problem and the
bounded decoding problem.

Until recently, the most efficient generic algorithm to solve the subset-sum problem with
n elements was proposed by Shamir and Schroeppel in 1981 and requires 2

n
2 time and 2

n
4

memory. In 2010, Howgrave-Graham and Joux presented a new algorithmic technique that
we call representation technique. The resulting probabilistic algorithm runs in expected time
20.337n and needs 20.311n of memory on average on random, hard instances. We provide a more
extensive complexity analysis. Due to our detailed study in the unbalanced case, we propose
a variable number of levels of the algorithm or to change to the complementary problem to
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achieve a minimal running time. Further improvements on the memory requirement allow us
to propose an algorithm of heuristically same asymptotic time using less memory 20.272n.
The representation technique can be extended by allowing negative coefficients in in-

termediate solutions. This generalization improves the search for a solution of a random,
hard subset-sum problem. The algorithm has a heuristic running time and memory re-
quirement of 20.291n and lead to the publication [BCJ11]. The memory requirement can be
reduced by heuristic assumptions to 20.279n while the asymptotic running time stays the same.

Part II is organized as follows. Chapter 2 introduces the subset-sum problem and
defines the setting of interest. We also give a short overview of proposed cryptographic
primitives based on the subset-sum problem and related schemes whose security depends
on the subset-sum problem. The following chapters present generic algorithmic techniques
to solve the subset-sum problem on a random, hard instance. We distinguish between
classical birthday-paradox attacks as the algorithm by Shamir and Schroeppel (chapter 3)
and algorithms that use the more recent representation technique in its basic (chapter 4)
and extended form (chapter 5). Chapter 6 presents an algorithm of constant memory
requirement which is part of the publication [BCJ11]. Chapters 2 and 3 follow in part
chapter 8 from [Jou09] while chapter 4 and 5 and are based on the publications [HGJ10]
and [BCJ11], respectively.

The most efficient method to solve the bounded-distance-decoding problem for a random
linear code is information-set decoding. A classical approach leads to an asymptotic worst-
case running time 20.05564n. The worst case is attained for an information rate that maximizes
the time to solve the decoding problem. Ball-collision decoding, recently proposed, obtains a
better result of running time 20.05559n. An application of the representation technique proves
to be very effective. A simple representation technique that permits no intersections allows
to recover the error vector in time 20.05363n with a small increase in memory. We propose a
variant that reduced the memory requirement to 20.0139n under heuristic assumptions.
The algorithm does not use the full power of the representation technique. Permitting

intersections in some bit positions, analogously to the extended representation technique,
allows to solve the syndrome-decoding problem over a random linear code to be solved in
time 20.04933n using 20.0307n space. The result is published in [BJMM12]. Heuristically, this
memory requirement can be reduced to 20.0306n .

Part III is organized as follows. Chapter 8 gives an introduction to linear error-correcting
codes and presents popular code-based cryptography: McEliece’s and Niederreiter’s public-
key-encryption schemes and the CFS signature scheme. Chapter 9 introduces the general
setting for information-set decoding and explains previous ideas. We present our improved
information-set-decoding algorithm in chapter 10. The first chapter is inspired by [Bar98,
Pet11] while the chapters 9 and 10 are based on the publication [BJMM12].
Appendix A gives an introduction to asymptotic approximations that we use later to es-

timate the asymptotic complexity of the algorithms. We present the octave code used to
evaluate the complexity of the different algorithms in appendix B.
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Chapter 1

Collision search: A valuable tool

An important algorithmic tool that has many applications in cryptology, in particular to
solve the knapsack problem and the syndrome decoding problem, is the efficient search for
collisions within two lists L1,L2 of elements. We denote the list of collisions by L1 ./ L2 and
the number of elements in Lj by Lj . A collision is the appearance of the same element in each
of the lists. A naive approach, checks all possible tuples of elements in the two lists leading to
a long running time of L1 · L2. More efficient algorithms use hash tables or sorting methods.
Assume that L1 ≤ L2 and that all elements within each list are different. One classic method
is the hash-join that computes and stores hash values of the elements of the shorter list, L2,
and then checks for each element of the second list, L2, if its hash value appears in the stored
hash table. The table look-up is done in constant time. The algorithm requires L1 +L2 simple
computations and requires to store the smaller of the two lists in a hash table.
A merge-join algorithm sorts the elements of the lists before and then searches for matching

elements. Sorting the lists costs L1 logL1 + L2 logL2. The merge-join reads simultaneously
one entry in each list and compares their values starting from the smallest elements. If no
match is found, the smaller entry is discarded and the next element is considered. Since both
lists are sorted this value can not match to any other entry in the other list. The algorithm
stops if one of the lists is scanned completely. As both lists can potentially be read until the
end, the maximal cost is L1 +L2. The total time complexity is L1 logL1 +L2 logL2 +L1 +L2

with a memory requirement of L1 logL1 + L2 logL2. We can also sort only one of the lists
resulting in a total time complexity of L1 logL1 + L2 logL1.
According to the above complexity analysis, we see that a hash-join is in favor of a merge-

join as the dominating space requirement is the shorter of the two lists and no sorting routine is
needed which reduces the time. Depending on the size of the lists and the accessible memory,
the sequential access to the lists may however be faster than a random access to a hash table.
Sorting can also be performed by an external machine leading to a fast and memory efficient
merge-join.
For later use in this work, we will often assume that both lists are of same size. Also,

the developed algorithms that use a join routine are of exponential complexity such that
logarithmic factors represent a minor cost. For the sake of simpler presentation, we therefore
stick to a merge-join routine keeping in mind that an implementation can be realized by use
of an efficient hash-join.
Section 1.1 describes a merge-join algorithm for integers that we later use as a subroutine

to solve the knapsack problem (part II). The merge-join algorithm in section 1.2 deals with
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Chapter 1. Collision search: A valuable tool

binary vectors and proves to be useful to solve the syndrome decoding problem (part III).
Both join routines are based on a classical algorithm such as presented in [Knu98, Wag02].

1.1. Searching collisions between integers

We are given two lists of integers L1 and L2 together with two integers M and R ∈ ZM and
want to compute the list of elements LR where

LR = {x+ y | x ∈ L1, y ∈ L2 such that x+ y ≡ R mod M} of size LR.

To find the elements of LR = L1 ./ L2, we follow the pseudo-code as given in algorithm 1.1
and described below.

Algorithm 1.1: Merge-Join – Find collisions between lists L1 and L2 of integers.
Input: L1, L2, M, R ∈ ZM , (additional parameters for filtering)
Output: LR = L1 ./ L2,C
Sort the lists L1 and L2 (by increasing order of the values modulo M)
Set counter C ← 0
For each Target ∈ {R,R+M}

Set i← 0 and j ← L2 − 1
While i < L1 and j ≥ 0

Set Sum← (L1[i] mod M) + (L2[j] mod M)
If Sum < Target then Increment i
Else if Sum > Target then Decrement j
Else

Set i0, i1 ← i
While i1 < L1 and L1[i1] ≡ L1[i0] (mod M) Increment i1
Set j0, j1 ← j
While j1 ≥ 0 and L2[j1] ≡ L2[j0] (mod M) Decrement j1
For i← i0 to i1 − 1

For j ← j1 + 1 to j0
Increment C
Append L1[i] + L2[j] to LR (unless filtered out, e.g., duplicates)

Set i← i1 and j ← j1

We first sort the two input lists in increasing order with respect to the values modulo M .
Two pointers i and j index the current element of each list and are initially set to the first
and last element of the list L1 and L2, respectively. We then compute consecutively the sum
of the modulo values of the two current elements: (L1[i] mod M) + (L2[j] mod M). The
value is bounded by 2M such that all elements whose sum equals to R or R + M need to
be found. We perform the search twice, once for each target R and R + M . Whenever the
sum exceeds the target, we go to the next smaller element in the list L2 by decrementing j.
If the sum is smaller than the target, we move to the next larger element in the list L1 by
incrementing i. If equality holds, we have found a collision. The following elements in both
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1.1. Searching collisions between integers

lists might be the same such that all possible combinations lead to a collision. We fix in turn
the pointer for the first and second list and check the consecutive elements of the other list
for collisions. An optional filtering process may test the colliding elements for consistency to
additional conditions. We may for example want to exclude all duplicates. The algorithm
stops when the pointer has reached the end of L1 or the first element of L2 while searching
with the target R+M .
Using a slight variation of algorithm 1.1, it is also possible to find collision over the integers,
that is, given L1 and L2 together with a target integer R to construct the set

LR = {x+ y | x ∈ L1, y ∈ L2 s.t. x+ y = R} .

The only differences are that we sort the lists by value (not by modular values) and then run
the loop with a single target value R.

Complexity. One needs to store the lists L1,L2 and LR leading to a memory requirement

MMerge-Join = L1 logL1 + L2 logL2 + LR logLR .

The initial sorting can be performed in time L1 logL1 + L2 logL2. The algorithm computes
the sum of two elements in each step and discards one until one list is scanned completely. If
no collision exists, both lists may be read until there end resulting in L1 + L2 computations.
If a match is found, all consecutive elements of the other lists may produce a match as well
which we will store in LR. The algorithm 1.1 requires L1 logL1 + L2 logL2 + L1 + L2 + LR
computations.
If we can assume that the values of the initial lists moduloM are uniformly distributed, the

expected value of LR is L1 · L2/M . Depending on additional conditions, we can also discard
collisions reducing the size of LR and thus reducing the memory requirement. We introduced
a counter C in algorithm 1.1 that counts the collisions. It may be larger than LR if not all
collisions satisfy the filtering condition. We express the time complexity in this case as

TMerge-Join = L1 logL1 + L2 logL2 + max(L1 + L2, C) .

For uniformly distributed elements, we approximate C by L1 · L2/M . In the following we
neglect logarithmic factors and write

TMerge-Join = Õ (max(L1, L2, C))

and
MMerge-Join = Õ (max(L1, L2, LR)) .

Variants for implementation. We already mentioned in the introduction to this section that
a hash-join is a good alternative. Using the here presented merge-join algorithm, we can also
save memory in practice if we can produce the elements of the starting lists on the fly. We
store only the smaller of the lists in sorted form, say L1. We then generate each element
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of L2 on the fly and search for an collision. The memory requirement is thus changed to
L1 logL1 + LR logLR. Using hash tables, we gain a logarithmic factor in time.
It is also possible to store the positions where the value modulo M changes in the sorted

list. In this way, we omit to search the corresponding indices for the second iteration with
target R+M .

1.2. Searching collisions in the vectorial case

Given a matrix Q ∈ F`×(m)
2 , a target t ∈ F`2 and two lists L1 and L2 containing binary vectors

of length m and weight p
2 + ε. Let x and y be two elements from L1 and L2, respectively. We

furthermore know that the sum of columns indexed by x⊕ y equals the target t on its r ≤ `
right most coordinates: Q(x ⊕ y) = t. We search all elements for which the above equality
holds on all ` bits and whose sum has weight p. The resulting list L is denoted by L1 ./ L2.
The join process is illustrated in figure 1.1.

L1

010100i0 →
110100

i1 →
100100

L2

011100 ← j0

← j1
110100

`

./

L

? ? 000
? ? 000

? ? 000
? ? 000

Figure 1.1.: Illustration of the vectorial merge-join algorithm to obtain L = L1 ./ L2.

Note that the weight of a sum of two vectors can differ from p depending on the number
of ones at the same coordinates. Also, we can obtain several times the same elements. We
filter out all such inconsistent collisions. The complete Merge-Join-Decode algorithm is
given as algorithm 1.2 and performs the following steps. Sort the first list in lexicographical
order according to the labels L1(x) := (Qx) and the second list according to the labels
L2(y) := (Qy) + t. A match of same labels is a collision for which Q(x⊕ y)[r] = t. It remains
to filter out the inconsistent and double elements.
To detect all collisions, one initializes two pointers i and j starting at the beginning of the

list L1 and the end of list L2, respectively. As long as the current elements do not collide, as
they differ in the label, we either increase i or j depending on the relative order of the labels.
If L1(xi) < L2(yj), we increase i else j. Once a collision occurs, that is, L1(xi) = L2(yj),
we need to check if the consecutive elements have the same labels. All possible tuples are
collisions. We initialize four auxiliary counters i0, i1 and j0, j1 with i and j, respectively. The
indices i0 and j0 mark the first collision. Then i1 and j1 can further be incremented as long as
the list elements retain the same labels. This procedure defines two sets C1 = {xi0 , . . . , xi1}
and C2 = {yj0 , . . . , yj1} for which all possible combinations yield a collision.
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Algorithm 1.2: Merge-Join-Decode – Find collisions between lists L1 and L2 of
binary vectors.
Input: L1,L2, r, p and t ∈ Fr2
Output: L = L1 ./ L2, C
Lexicographically sort L1 and L2 according to the labels L1(xi) := (Qxi) and
L2(yj) := (Qyj) + t.
Set collision counter C ← 0.
Let i← 0 and j ← (L2 − 1)
While i < L1 and j < L2

If L1(xi) <lex L2(yj) then Increment i
Else if L1(xi) >lex L2(yj) then Increment j
Else

Let i0, i1 ← i and j0, j1 ← j
While i1 < L1 and L1(xi1) = L1(xi0) Increment i1
While j1 < L2 and L2(yj1) = L2(yj0) Increment j1
For i← i0 to i1 − 1

For j ← j0 to j1 − 1

Increment C
Insert collision xi + yj into list L (unless filtered out)

Let i← i1 , j ← j1

We remove on the fly solutions with incorrect weight, wt(xi+yj) 6= p, and duplicate elements
xi + yj = xk + y` and add all remaining elements to the list L. The procedure continues at
the positions i ← i1 and j ← j1 until the end of one list is reached. The collision counter
C in the algorithm allows us to measure the time spent for removing inconsistent solutions
and duplicates. We denote the length of the input lists by L1, L2 and the number of returned
elements by L. The total running time of Merge-Join-Decode (algorithm 1.2) is

TMerge-Join-Decode = L1 logL1 + L2 logL2 + max(L1 + L2, C)

using space
MMerge-Join-Decode = L1 logL1 + L2 logL2 + L logL .

In the asymptotic setting, we will neglect logarithmic factors and simplify the time and
memory cost to

TMerge-Join-Decode = Õ (max(L1, L2, C))

and
MMerge-Join-Decode = Õ (max(L1, L2, L)) .

Assuming uniformly distributed labels, the probability of a collisions in L1 × L2 is 2`−r. We
can then estimate the number of collisions: E [C] = L1·L2

2`−r
.
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1.3. Birthday problem and k-sum problem

The collision search algorithms can be applied to solve the birthday problem. It is a well
known combinatorial tool that we state in its binary form.

Definition 1.1 (Birthday problem or collision problem)
Given two lists L1,L2 of elements drawn independently and uniformly at random in {0, 1}n,
find x1 ∈ L1 and x2 ∈ L2 such that x1 = x2.

We can make use of a join algorithm that finds collisions to find a single solution similar to
the algorithms in section 1. Allowing more lists, generalizes the combinatorial problem to the
k-sum problem:

Definition 1.2 (k-sum problem)
Given k lists L1, ..,Lk of elements drawn independently and uniformly at random in {0, 1}n,
find x1 ∈ L1, .., xk ∈ Lk such that x1 ⊕ ..⊕ xk = 0n.

To solve a more general equality with a target s ∈ {0, 1}n, i.e., x1⊕ ..⊕xk = s, we can modify
the last list to elements xk ⊕ s for xk ∈ Lk. We can hence restrict ourselves to explain how
to find one solution for the case s = 0n.

1.3.1. How to solve the k-sum problem

Consider a 4-sum problem. We are given four lists L1, ..,L4 of independently and equally
distributed bitstrings of length n and we want to find four elements (each in one of the lists)
whose XOR is zero. Let Li denote the size of list Li for i = 1, .., 4. If L1 · L2 · L3 · L4 � 2n,
we expect to find a solution with good probability. Observe that for a solution where

x1 + x2 + x3 + x4 = 0n, (1.1)

necessarily x1 +x2 = x3 +x4 . It is hence natural to create sums of elements x1 +x2 ∈ L1×L2

and x3 +x4 ∈ L3×L4 in a first step. A collision between these two lists then detects a solution
to (1.1).
To reduce the size of the intermediate lists, we can impose a constraint on the elements

in L1 ./ L2 and L3 ./ L4: We denote by [x]t the lower t bits of an element x in {0, 1}n. If
x1 +x2 = x3 +x4, then [x1 +x2]t = [x3 +x4]t for all 1 ≤ t ≤ n. We can guess the intermediate
valueMt = [x1+x2]t of a solution and create all elements (x1, x2) ∈ L1×L2, (x3, x4) ∈ L3×L4

which correspond to Mt / 2t. Again, a collision leads to the solution. As the correct value of
Mt is not known, we have to try all 2t possible values. For a random knapsack, we expect that
the values of [x1 + x2]t, [x3 + x4]t are equally distributed and independent. The probability
that [x1 + x2]t = [x3 + x4]t = Mt is then 2−t.

Algorithm. Based on these observations, we can develop the following algorithm. We are
given four lists Lj of same size L = 2` containing elements xi drawn independently and
uniformly at random in {0, 1}n. Two merges create elements x1 + x2 and x3 + x4 that
correspond to the targetMt on the lower t coordinates. We expect to find about L2/2t = 22`−t
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elements for the lists L1 ./ L2 and L3 ./ L4. In a second step, we search collisions between
x1 + x2 and x3 + x4. For each Mt, this happens with probability 2t−n and we expect to find
24`−t−n vectors in the final join per Mt.
Using a hash-join, the required memory is

L logL+min(|L1 ./ L2| log(|L1 ./ L2|), |L3 ./ L4| log(|L3 ./ L4|) +Nsol logNsol)

where Nsol denotes the final number of solutions. In the worst case, we need to loop over all
2t values for Mt. The running time becomes

2t · (L+ |L1 ./ L2|+ |L3 ./ L4|+Nsol) .

If we assume that the elements in the base lists are uniformly distributed, we ap-
proximate |L1 ./ L2| and |L3 ./ L4| by 22`−t. The expected running time becomes
O
(
max(2`+t, 22`, Nsol)

)
using O (M logM) space where M = max(2`, 22`−t).

How to choose ` and t. Depending on the choice of `, we have to adapt t such that the last
join finds at least one solution which means that t ≤ 4`− n.
A typical choice for the starting lists is a size 2

n
4 and t ≈ n

4 to minimize the memory
requirement as done by Chose, Joux and Mitton [CJM02] to speed-up parity checks. The
algorithm finds one solution on average in time O

(
n 2

n
2

)
using memory O

(
n 2

n
4

)
.

If we can create more elements in the base lists L1, ..,L4, we can reduce the running
time of the above presented algorithm at cost of an increased memory requirement. Wag-
ner showed [Wag02] in 2002 that the k-sum problem can be solved with a time and memory
complexity of at most O

(
n 2n/3

)
, given that the base lists can be extended freely with el-

ements drawn independently and uniformly at random to about size 2n/3. This in return
means that there are sufficiently many solutions to the problem.
Consider k = 4 and lists of size L = 2`. To balance the memory, we choose t = ` and

obtain about 22`−(n−l) = 23`−n colliding elements on average after the final join. Hence, if we
choose ` ≥ n/3, we can expect to find at least one solution on average. The minimal time and
memory complexity is then O

(
n 2n/3

)
which occurs for base lists of size 2n/3 where ` = n/3.

The idea can be applied to the general case of k lists. A solution can be expected if L ≥
2n/(log k+1). This k-tree algorithm [Wag02] requires at most time and space Õ

(
k 2n/(1+log k

)
with lists of size Õ

(
2n/ log k

)
.

In 2009, Minder and Sinclair [MS09] extended the k-tree algorithm by Wagner in that they
permit smaller starting lists. For 2n/k ≤ L ≤ 2n/(log k+1), they present an algorithm that
trades memory against time. The basic idea is to allow a flexible number of bits that are
eliminated in each step.

Further related work. Already in 1991, Camion and Patarin presented a k-tree algorithm
to break a knapsack-based hash-function. Blum, Kalai and Wasserman constructed a k-tree
scheme for a proof in learning theory. Coron and Joux [CJ04] applied Wagner’s algorithm to
break a hash function based on error correcting codes. The attack was later refined in [AFS05].
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Lyubashevsky [Lyu05] and Shallue [Sha08] presented a variant of Wagner’s algorithm to solve
the subset sum problem for random instances of high density.
In the case that k ≥ n, the k-sum problem can be solved by Gaussian elimination in time
O
(
n3 + kn

)
as for example shown in [BM97].
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Improving the search for a
solution to the subset-sum
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Chapter 2

The subset sum problem in
cryptography

2.1. Definition, characteristics and assumptions

The binary knapsack problem is a general case of the subset-sum problem. It is an optimiza-
tion problem and can be stated as follows:

Definition 2.1 (Binary knapsack problem)
Given a set of n positive integer values vi, positive integer weights wi and a maximal positive
integer weight S, find binary xi that maximize

n∑
i=1

xivi s.t.

n∑
i=1

xiwi ≤ S .

In the special case where wi = vi and we ask for equality with S, we obtain the subset-sum
problem.

Definition 2.2 (Subset-sum problem – SS)
Given a set of n integers ai and an integer S, find all solutions x = (x1, .., xn) ∈ {0, 1}n such
that

a · x :=

n∑
i=1

ai xi = S (2.1)

or show that no solution exists.

The problem is NP-complete [Kar72] in its decisional form and its optimization form above
is NP-hard. Let M denote the maximal size of the integers ai, M = log2(maxi ai). We
then denote a subset-sum problem as defined above by SS(n,M). We omit n,M if it is
clear from the context. The subset-sum problem is also referred to as knapsack problem in
cryptography. The integers ai are called weights or knapsack elements. The set of weights is
the knapsack. We will concentrate on the SS for usage in cryptography. The corresponding
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decision problem to SS is in NP as we can efficiently check a solution for validity and it is
NP-complete [Ajt98, Kar72]. It can be reduced to the computational problem, SS, which is
NP-hard. Also the computational problem can be reduced to the decisional problem such
that is NP-hard as well. Under the conjecture that P 6= NP , we do not expect to find a
polynomial-time algorithm that solves the problem exactly in all cases.
The hardness and the way how to solve an instance of the subset-sum problem depends on

a property of the underlying knapsack which is called density.

Definition 2.3 (Density)
The ratio between the number of elements in the knapsack a = (a1, .., an) and the size of the
largest element is called density,

d :=
n

log2(maxi ai)
. (2.2)

We are furthermore interested in knapsacks that have no apparent structure. For this
purpose, we define a random knapsack or an average-case knapsack as follows.

Definition 2.4 (Random knapsack or average-case subset-sum problem)
Let the weights ai be chosen uniformly at random in the interval [1, b2

n
d c]. Let the solution x

be chosen uniformly at random in {0, 1}n. The subset sum S =
∑n

i=1 aixi is called a random
knapsack with solution.

Given a random knapsack problem, we can count the number of binary vectors of weight `
and length n. There are

(
n
`

)
many which is maximal for ` = dn

2e. We thus expect that the
solution vector x has a Hamming weight, number of non-zero coordinates, ` ≈ dn

2e and call
the knapsack equibalanced. Consequently, if we split the solution of a random knapsack in k
parts of same size, where k | `, we expect that each part has weight close to `

k . If ` differs
considerably from n

2 , we call the knapsack unbalanced.

Modular knapsack. A modular knapsack problem is the following problem:

a · x :=

n∑
i=1

ai xi ≡ S mod M (2.3)

where the knapsack elements are elements in ZM for an integerM . Solving modular knapsacks
or knapsacks over the integers are equivalent tasks if we neglect polynomial factors. Having
to solve a knapsack problem over the integers and given an algorithm that solves any modular
knapsack, we simply set M =

∑n
i=1 ai + 1 to obtain a solution to the integer knapsack.

Conversely, if we have to solve problem (2.3) and are given an algorithm that solves non-
modular knapsacks, we apply the algorithm several times with different targets. The n weights
ai of the modular knapsack lie in [0,M − 1] and all possible sums are values in the range
[0, n(M − 1)]. The target S ∈ ZM implies that we search a solutions corresponding to integer
values in {S, S + M, .., S + (n − 1)M} which are the n − 1 different targets we have to test.
(We have done the same in section 1.1 when we searched for a collision in ZM and changed
the target to R and R+M .)
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Assumptions. We turn our attention especially to the case of the average subset-sum prob-
lem as it is of interest for designing and cryptanalysis of cryptographic systems. We assume
that no information is leaking about the hidden structure (e.g., a super increasing sequence)
of the underlying knapsack used as trapdoor in a cryptographic system and thus study generic
algorithms for the hard knapsack problem, i.e., density equal to one. For cryptographic pur-
poses, we assume that a solution always exists. For security reasons the number of knapsack
elements is large which is why we analyse the cost in the asymptotic case. The weight of the
solution vector is expected to be n/2. It is also at most n/2 as we can always consider the
inverse problem where we search for x̄ := 1− x such that

a · x̄ =

n∑
i=1

ai − S .

Relation to the k-sum problem. The subset-sum problem is related to the k-sum problem,
we presented in section 1.3. We can split the sets of n knapsack elements into k disjoint sets
and create k lists of size 2n/k containing all possible subsums. An algorithm that solves the
k-sum problem can hence be used to find the solution to the subset-sum problem. Section 3
presents algorithms based on this idea.

Otherwise, consider we are given k lists of positive integers for which we desire to solve the
k-sum problem with target S. For simplicity of presentation, let us assume that all lists are of
same length m. We can write all elements in a row of length km and thus create a subset-sum
problem. An additional constraint is that within every successive block of m elements, only
one is chosen.

Take for example the classical birthday problem, k = 2. Let ai be the elements of the first
list and bi be the elements of the second list. Compute the integer K =

∑
i(ai + bi) + 1. We

create a knapsack of elements ai +K and bi + (m+ 1)K with target S +K + (m+ 1)K. The
target is strictly smaller than 2K + (m+ 1)K = (m+ 3)K and larger than (m+ 1)K. Note
that summing up all elements ai +K leads to a value that is strictly smaller than (m+ 1)K.
We thus need to include one element bj + (m + 1)K to the solution. If we include two such
elements, we obtain a value of at least size 2(m+1)K which exceeds the target. As the target
is larger than (m + 1)K, it contains an additional element of the form ai + K. If we would
include a third element to the solution of the form ai +K, we would obtain a sum that is at
least (m+ 1)K + 2K = (m+ 3)K which also exceeds the target.

The method can be extended to the general case of k lists. In this way we can solve the
k-sum problem by applying an algorithm that solves the subset-sum problem. The reduction
is not tight. The dimension of the knapsack is mk and a classical algorithm runs in time
Õ
(

2
mk
2

)
(section 3). Already an exhaustive search on the k-list problem runs in time mk

which is much more efficient.
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Chapter 2. The subset sum problem in cryptography

2.2. Proof of NP-completeness: Reduction to the vertex cover
problem

Let G = G(V,E) be a graph with a set of n vertices V and m edges E. A vertex cover for G
is a set C ⊂ V of vertices such that every edge of the graph has at least one incident vertex
in C. We define the vertex cover problem as:

Problem 2.1 (Vertex cover problem (VC))
Given a graph G(V,E) and an integer k, is there a vertex cover of at most k vertices?

To find a minimal vertex cover (VC) is a classical optimization problem that is NP-hard.
The decisional version is NP-complete [Kar72]. We can reduce the decisional subset-sum
problem (SS) to VC and conclude that the subset-sum problem is at least as hard as VC and
thus NP-complete. Given an oracle that solves SS one could solve VC.

Reduction: Let G(V,E) be a graph with a set of n vertices V and m edges E and let k be
a parameter. We aim to define a subset-sum problem depending on the graph and show that
there exists a k-vertex cover (a vertex cover of at most k vertices) if and only if there exists
a solution to the subset-sum problem. We define a set of m+ n integers and a target S for a
subset-sum problem in the following way: For every vertex v and every edge (u, v), we define
integers av and bu,v, respectively, represented as coefficient vectors of length m + 1 in base
four: For the j-th edge (u, v), j = 0, ..,m− 1, we set the j-th digit of au and av to one while
all others are set to zero except for the m-th position of au, av which is one. The i-t vertex is
associated to the integer

avi =

m−1∑
j=0

ti,j · 4j + 1 · 4m

where ti,j = 1 if ej is incident to avi and ti,j = 0 else. The digits of b(u,v) = bej are zero except
for the j-th position that equals 1. We note that a sum of such integers can only lead to
coefficients in {0, 1, 2, 3} at the positions corresponding to 4i for i = 0, ..,m− 1. This means
that no carry bits occur. We can know define the target S of the subset-sum problem:

S = k · 4m +
m−1∑
j=0

2 · 4j .

Table 2.1 visualizes the coefficients of the elements of the set and the target. Consider a sum
of some integers av and bu,v, i.e., a subsum of lines in table 2.1. We want to find a subset
of integers av and bu,v that satisfies the target. Note that the first term of S can only be
obtained by summing up exactly k integers av as they have a one at the m-th position. The
second term is true in two cases: Either for every edge ej , that we add, exactly one incident
vertex is present in the sum or an edge is not included while both its endpoints are. The
coefficient two is thus equivalent to the fact that the set of vertices is a vertex cover.
Suppose that G has a vertex cover C ′ of at most k vertices. It then also has a vertex cover
C of exactly k vertices as adding vertices preserves the property of being a vertex cover. We
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×40 ×41 . . . ×4m

av0 t0,0 . . . t0,m−1 1
...

... . . .
...

...
avn−1 tn−1,0 . . . tn−1,m−1 1
be0 1 0

. . .
...

bem−1 1 0

S 2 . . . 2 k

Table 2.1.: Subset-sum problem (av, b(u,v), S) in base four.

compute the sum of integers av for all v ∈ C and bu,v for which exactly one out of u, v is in
C. By the previous observation, we obtain the target sum S.
Suppose now that there exist subsets M ⊆ V and N ⊆ E such that∑

v∈M
av +

∑
(u,v)∈N

= S .

Since av ≥ 4m and S < (k + 1)4m, we know that |M | ≤ k. As no carry bits occur and every
of the first m positions of S is two, we can conclude that for every edge at least one incident
vertex is in M . The set M is hence a vertex cover of G of at most k vertices. The parameter
k is not fixed and the above reasoning is hence true also for a minimal vertex cover.

2.3. The knapsack problem in cryptography

A public key encryption scheme based on the knapsack problem (2.2) could be as follows.
We provide a public sequence a = (a1, .., an) of weights and encrypt a message x ∈ {0, 1}n
as S = a · x. For a random hard knapsack, the receiver of the encrypted message and an
attacker are faced with the same problem. To allow for a more efficient decryption on the
receiver’s end, one needs a trapdoor. The knapsack problem is easy to solve if the sequence
a is super-increasing, which means that each element is larger than the sum of the previous
elements:

aj >

j−1∑
i=1

ai for j = 2, .., n .

Starting from the last coordinate xn, we can then deduce one after another that xj = 1 if
and only if S >

∑j−1
i=1 ai. The sequence a is kept secret and is used for an easy decryption,

while a scrambled sequence b, derived from a, is made public. The security relies on the
quality of the disguise. The attacker has to solve a random knapsack problem if the structure
of the knapsack is well hidden. Merkle and Hellman proposed the first public key encryption
scheme based on the knapsack problem over the integers [MH78] following this approach. The
structure is hidden by a strong modular multiplication but attacks [Sha82] showed that this
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Chapter 2. The subset sum problem in cryptography

disguise is insufficient. In the following many systems were proposed and broken. A good
survey of proposed systems and successful attacks is provided in [BO88, Des88, Odl90, Lai01].
In 1997, Ajtai and Dwork [AD97] constructed a provably-secure cryptosystem based on

the the subset-sum problem. The scheme is as hard as solving the worst-case unique short-
est vector problem. The difficulty to break the scheme is then related to the reduction from
average subset sum to the unique vector problem [LO85, FG84]. Other lattice based cryptosys-
tems [Reg04, Reg05, Pei09] are also as hard to attack as the average-case subset-sum problem.
While the reduction is not tight, the scheme by Lyubashevsky, Palacio and Segev [LPS10] is
polynomial-time equivalent to the average subset-sum problem.
Beside public-key schemes other cryptographic primitives can be constructed. Impagliazzo

and Naor proposed [IN89] efficient pseudo-random generators, universal one-way function and
bit-comitment schemes that can be proven secure based on random instances.

2.4. Solving the subset-sum problem in short

Impagliazzo and Naor showed [IN96, IN89] that the subset-sum problem for average-case
instances is hardest for a density close to one. We present algorithms for average-case instances
of density one in chapter 3, 4 and 5. The average running time of a generic algorithm for
random instances using no structural information on the group is exponential.
The knapsack problem is of low density if d < 1. For a density smaller than 0.94, the

knapsack problem can be solved by lattice reduction [LO85, CJL+92] with exception of an
exponentially small fraction of random knapsacks. The technique reduces the SS to a shortest
vector problem in an integer lattice that can be solved given a lattice oracle. For small dimen-
sions the oracle is replaced in practice by a reduction algorithm (e.g., LLL-algorithm [LLL82]
or BKZ [Sch87]) that solves the problem in polynomial-time.
For knapsacks of high density, i.e., d > 1, polynomial-time algorithms exist as well. The SS

can be solved for ai = O (n) by a dynamic programming algorithm [TS86] or an algorithm
based on elementary number theory [GM91] in time at most O

(
n2
)
. The technique based on

a reduction to lattice problems can also be applied to high density knapsacks [JG94] leading to
an exponential algorithm of time O

(
2n/1000

)
. On top of these generic attacks, a cryptosystem

based on the subset-sum problem may suffer from a badly disguised trapdoor that allows an
efficient attacker (see previous section 2.3).
The ideal public key cryptosystem based on the knapsack problem would therefore have

high density (close to one) and a good mechanism to hide the structure needed for an efficient
decryption.

36



Chapter 3

Classical birthday paradox algorithms

A brute force attack on the subset-sum problem enumerates all coefficient vectors x ∈ {0, 1}n
and evaluates 2n sums; it takes time 2n storing only one element at a time. It is however more
efficient to split the set of weights ai into two of approximate same size [HS74]. We then store
all 2b

n
2
c sums

∑bn
2
c

i=1 ai xi in a list L1 and search for collisions with the sums S −
∑n
bn
2
c+1 ai xi

in a second list L2. A collision corresponds to the equation

bn
2
c∑

i=1

ai xi = S −
n∑

bn
2
c+1

ai xi

which clearly gives a solution x to the original problem (2.1). The lists contain each about
2

n
2 elements. Creation of the lists and the collisions search between sorted lists has a running

time of order O
(
n 2

n
2

)
as elaborated in Section 1.1.

3.1. Shamir-Schroeppel algorithm

The memory requirement of the above presented algorithm can be reduced as proposed by
Schroeppel and Shamir [SS81]. We assume that the solution has weight n

2 and that 4|n. We
split the set of weights into four parts and compute L1,L2 on the fly as sums of twice n

4

knapsack elements. The elements of the fictive lists L1 are sums σ1 + σ2 where

σ1 ∈ Y1 :=


bn
4
c∑

i=1

ai xi |xi ∈ {0, 1}

 and σ2 ∈ Y2 :=


bn
2
c∑

i=bn
4
c+1

ai xi |xi ∈ {0, 1}

 .

The elements of the fictive list L2, sums σ3 + σ4, are built in the same way using the other
half of the knapsack elements. The lists Yi, for i = 1, 2, 3, 4), are called base lists and their
size is denoted by Yi which is equal to 2

n
4 . We found a solution if a collision occurs, that is,

if
σ1 + σ2 = S − (σ3 + σ4) . (3.1)

The elements of L1 are created in increasing order while we need L2 to be produced in
decreasing order. To compute L1, we create the lists Y1,Y2 and sort Y2 in increasing order.
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Chapter 3. Classical birthday paradox algorithms

We then compute the sums of the current (at the beginning the smallest) element in Y2 with
all of Y1 and store these values in a binary search tree. Note that the smallest element of
L1 is necessarily a sum of the smallest element of Y2 and some element in Y1; it is equal to
the smallest element in the tree. Also, if we update the values of the tree by replacing Y2[i]

(i initially by 0) by a following element of the ordered list Y2, we augment the value. The
algorithm repeatedly outputs the smallest element of the tree, thus creating L1 on the fly,
and updates the node. The new value is the sum of to the same element of Y1 and the next
element of Y2 (until the end of the list is reached).
The elements of L2 are created by sorting Y4 in decreasing order and outputting the largest
elements of the tree. In order to find the solution to the original problem (2.1), we produce
the first element σ1 +σ2 of L1 and σ3 +σ4 of L2 and compare the value. As long as σ1 +σ2 <

S − (σ3 + σ4), we create a new element of L1; otherwise we compute the next element of L2.
The size of the self-balancing trees is Y1 ≈ Y4 = 2

n
4 and determines the memory complexity of

size O
(
n 2

n
4

)
. The cost for search and update are of order log Y1. The overall time complexity

lies unchanged by O
(
n 2

n
2

)
as we still need to compare 2

n
2 elements. If n is not divisible by

4, the complexity changes in its constant terms that are neglected in the O-notation.

3.1.1. Unbalanced case

If the knapsack is unbalanced and has weight ` = αn, for real α in the interval (0, 0.5), we
modify the base lists to sums of l

4 knapsack elements out of n
4 elements. The lists Yi contain

each Yi =
(n

4
`
4

)
= O

(
2

n
4
h(α)

)
elements. The memory requirement is maxi(Yi log Yi, NSol). To

find the solution, the algorithm joins the lists Yi and creates twice Y 2
1 =

(n/4
`/4

)2
elements for

the fictive lists L1,L2.
So far, the algorithm finds the solution if exactly `/4 knapsack elements are indexed in each

of the lists Y1, ..,Y4. For example, the solution will be missed if is has weight `/4 + 1 within
the first n

4 knapsack elements. To guarantee a solution, we have to permute the knapsack
elements. The choice of the sets can be done randomly or follow a systematic approach as
described in the following.

Deterministic variant. We line up the knapsack elements and start with a window containing
the first half of the elements for the list L1. The second half is associated to L2. If the solution
vector indexes more than n

4 ones in the first half, it indexes less than n
4 in the second half.

Moving the window to the right by one changes the partial weight until the window of L1

marks the last half. As we start with a window containing more than n
4 ones and end with

one having less than n
4 , we know that necessarily one intermediate window contained exactly

n
4 active knapsack elements. Applying the algorithm on each window, we have found the right
subsets for L1,L2 after at most n

2 steps,. Assume that the solution is well distributed for one
window. We then have to find a right choice of n

4 elements for Y1,Y2,Y3 and Y4. We proceed
in the same way: Within each half, we choose inner windows of length n

4 starting with the
first quarter of elements for Y1 and the last quarter for Y4. If no solution is found, we slide the
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3.2. Heuristic Schroeppel-Shamir

inner windows by one to the right. After at most (n
4 )2 steps, we have found the right subsets

Y1, ..,Y4 [Sti02]. In total, we have to try O
(
n3
)
different sets. The deterministic algorithm

is of time complexity O
(
n42

n
2
h(α)

)
.

Probabilistic variant. A randomized choice of the sets of knapsack elements for L1 as pro-
posed by Coppersmith [Sti02] permits to reduce the number of iterations. We assume that
the choice of n

2 elements is done independently at random for each iteration. The probability
to pick a good set that contains n

4 knapsack elements that are indexed by the solution vector
is (n

2
n
4

)2

/

(
n
n
2

)
≈ 2

√
2

πn
= O

(
1/
√
n
)

which reduces the iterations to an expected number of about
√
n on average for large n. Using

this randomized approach for the algorithm of Schroeppel-Shamir leaves us with n3/2 random
choices on average for the subsets Y1, ..,Y4. The probabilistic algorithm is of time complexity
O
(
n5/2 2

n
2
h(α)

)
.

3.2. Heuristic Schroeppel-Shamir

The approach of Shamir and Schroeppel to reduce the memory requirement works if an
ordering on Z exists which is compatible to the group operation. This might not always
be the case. Depending on the group, we can impose a constraint on the elements in the
intermediate lists of a birthday-paradox algorithm. This is a common technique used to
solve the k-sum problem as presented in Section 1.3. We have to take care that the property
that we impose is shared by at least one solution in the case that many exist. If there exists
only one solution, we change the condition until we find the solution. In the binary case,
we impose a constraint on t higher bits while for an integer knapsack, we can work with a
modular condition. The two ways are very similar as integers can be represented as binary
vectors and a modular condition can be realized as a bit condition. The idea leads to a
heuristic version [HGJ10] of the algorithm by Schroeppel-Shamir to solve integer knapsacks.
It avoids the use of priority queues and has the same heuristic complexity as the original
algorithm. For some degenerated cases however the running time might be increased.

We assume that the solution has weight n
2 and that 4 |n. A solution is represented by

subsums σ1, .., σ4 ∈ Y1 × ..× Y4 that fulfil equation (3.1):

σ1 + σ2 = S − (σ3 + σ4) .

So they also satisfy the congruence

σ1 + σ2 ≡ S − (σ3 + σ4) ≡ R mod M

for some modulus M and a random integer in ZM . As we do not know the value R, we will
loop over all possible M values.
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We choose a random integer R and four non-overlapping subsets of knapsack elements, each
containing one quarter of the n elements, and create lists Y1, ..,Y4 of all possible subsums
σi. The lists are of size 2

n
4 . The next step joins the list Y1 with Y2 to obtain the list L1 of

elements σ1 +σ2 where σ1 +σ2 ≡ R mod M : We sort Y1 according to the value mod M and
search for each σ2 ∈ Y2 for the element R− σ2 in Y1. The lists Y3 and Y4 are joined likewise
to create elements σ3 +σ4 in a list L2. For a random knapsack and M smaller or equal to the
size of the largest knapsack element, we can assume that the values are independently and
equally distributed values in ZM (see further details in section 4.1). The size of the lists L1

and L2 is then about 2
n
2 /M . To minimize the memory requirement and the time, we choose

M of size close to 2
n
4 (a bit smaller). The last step searches a collision between L1 and L2

over the integers. We can realize this in an efficient way by sorting L1 and L2 in increasing
order. We then start with the first element of L1 and the last one of L2. Three cases are
possible: If σ1 +σ2 ∈ L1 is smaller than S− (σ3 +σ4), we move the pointer of L1 one element
up. If σ1 + σ2 ∈ L1 > S− (σ3 + σ4), the pointer of the second list is updated. We have found
a collision if equality holds.

Complexity. The algorithm needs to sort and store base lists of 2
n
4 elements. The first join

then finds an expected number of 2
n
4 colliding elements that it stores in lists. The memory

requirement is thus of order O
(

n
4 2

n
4

)
. The last step sorts twice about 2

n
4 elements and

searches a collision in at most 2 · 2
n
4 steps. We need to repeat the previously described steps

choosing each time a new R which leads to a running time of O
(
n 2

n
2

)
.

Unbalanced case. For a solution vector of weight ` = αn, α ∈ (0, 0.5), we change the
base lists to contain all subsums of `/4 knapsack elements. For a right choice of four sets
of knapsack elements for the base lists, we then find the solution. However, the correct split
is not known in advance and we can apply the window method or the probabilistic way to
change the base lists as explained in section 3.1.1.

Degenerated case. For some knapsacks, the running time can considerably differ from the
expected one. This is the case when the number of modulo sums is not well distributed over
all possible values in ZM . Some target R will then lead to many solutions and the size of the
lists L1,L2 will exceed the expected size 2

n
4 . For an average knapsack, we can assume that

the values are well distributed as shown in section 4.1.

Many solutions. For a large number NSol of solutions, we can stop the algorithm as soon
as we have found enough solutions. The maximal running time to search only one solution is
then divided by NSol. It is lower bounded by 2

n
4 , the size of the lists.

40



3.3. A time-memory tradeoff on Schroeppel-Shamir

3.3. A time-memory tradeoff on Schroeppel-Shamir

The original Schroeppel-Shamir algorithm works in time Õ
(
2n/2

)
and memory Õ

(
2n/4

)
. In

this section we describe a continuous time-memory tradeoff down to Õ
(
2n/16

)
memory. That

is we describe a variant of Schroeppel-Shamir that runs in time Õ
(
2(11/16−ε)n) requiring

space Õ
(
2(1/16+ε)n

)
for any 0 ≤ ε ≤ 3/16. For simplicity we first describe the algorithm with

exactly Õ
(
2n/16

)
memory.

We write the knapsack as σ1 + σ2 = S − (σ3 + σ4) as in (3.1) where each σi is a knapsack
of n/4 elements:

σ1 =

n/4∑
i=1

xiai, σ2 =

n/2∑
i=n/4+1

xiai, σ3 =

3n/4∑
i=n/2+1

xiai, σ4 =
n∑

i=3n/4+1

xiai .

We guess three values R1, R2 and R3 of 3n/16-bit each and we set R4 such that R1 +R2 +

R3 +R4 = S mod 23n/16. We consider the four subknapsack equations

σi = Ri mod 23n/16 . (3.2)

We solve the four knapsack problems, w.r.t. (3.2), independently by using the original
Schroeppel-Shamir algorithm. Therefore in time Õ

(
2n/8

)
and memory Õ

(
2n/16

)
we obtain

four lists {σ1}, {σ2}, {σ3} and {σ4} of solutions satisfying the four equations (3.2). To
recover the knapsack solution we merge these four lists using the same merging procedure as
in the original Schroeppel-Shamir algorithm; since each list has size Õ

(
2n/16

)
, the merging

procedure runs in time Õ
(
2n/8

)
and uses Õ

(
2n/16

)
memory. Since the partial target sums, Ri

of 3n/16-bit each, are not known, we have we have to repeat 23n/16 times. The total running
time becomes

Õ
(

23n/16
)3
·
(
Õ
(

2n/8
)

+ Õ
(

2n/8
))

= Õ
(

211n/16
)

and the memory consumption is Õ
(
2n/16

)
.

It is easy to generalize the idea if we can devote more memory, say Õ
(
2(1/16+ε)n

)
for any

0 ≤ ε < 3/16. We choose the Ris of size (3/16 − ε)n-bit each. We can still build the
four lists {σi} in time Õ

(
2n/8

)
using Schroeppel-Shamir, but this time the size of the lists is

Õ
(
2(1/16+ε)n

)
. The merging-join runs in time Õ

(
2(1/8+2ε)n

)
, still with memory Õ

(
2(1/16+ε)n

)
.

We obtain a total running time of

Õ
(

2(3/16−ε)n
)3
·
(
Õ
(

2n/8
)

+ Õ
(

2(1/8+2ε)n
))

= Õ
(

2(11/16−ε)n
)

and a memory consumption Õ
(
2(1/16+ε)n

)
.
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Representation-technique algorithm

In 2010, Howgrave-Graham and Joux proposed a new generic algorithm [HGJ10] to solve the
knapsack problem (2.2) for random instances of density 1. A density close to 1 implies that
the problem has a unique solution (or few solutions). The new idea is to allow for an overlap
between the vectors that we later combine to a solution, i.e., all vectors are of same length as
the solution and no longer of half its length as in the previously proposed algorithms.
We define a representation of the solution of weight ` as a tuple (y, z) ∈ {0, 1}n × {0, 1}n

such that x = y+z where y and z are almost of same weight ∼ `/2. Figure 4.1 shows one such
representation. The vectors y, z are each a partial solution. The number of representations
depends on the number of possibilities to choose b`/2c out of ` ones in x:

NHGJ =

{
2 ·
(

`
(`−1)/2

)
for odd `( `

`
2

)
for even `

(4.1)

which is of order O
(
2`
)
for large n and `.

For simplicity, we will assume that 2|` from now on. The new idea is to search for one
representations of the solution for which the following modular constraint holds:

a · y ≡ R mod M and
a · z ≡ S −R mod M

(4.2)

for a large integer M and a random element R of ZM .

wt(x) = `

x

wt(y) = `/2
y

wt(z) = `/2

z

Figure 4.1.: One representation (y, z) of a solution x. The shaded area indicates non-zero bit posi-
tions.
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Suppose we are given two lists L1,L2 of sums a · y =
∑n

i=1 aiyi and a · z =
∑n

i=1 aizi that
satisfy (4.2) where y, z are drawn independently and uniformly at random from {0, 1}n and
have weight `/2. It follows that

a · y + a · z ≡ S mod M

for all pairs of elements in L1,L2. If we find a pair for which the equation holds over the
integers and where y + z is of weight `, we have found a representation and the solution. We
see that a join between the two given lists may lead to a solution. In order to develop an
algorithm along these lines, it is of importance to study the probability that partial knapsack
sums as a · y take values in ZM which we will do in section 4.1.

The ideas behind. We have transformed the original problem in two ways: First, we no
longer search directly for a unique solution but we perform a search for one-out-of-many
representations. We have added degrees of freedom and increased our search space expo-
nentially. In return, we need to decrease the search space to obtain an efficient algorithm.
Second, the elements in L1,L2 are solutions of weight `/2 of two modulo knapsacks given
in (4.2). They can be found by a classical Shamir-Schroeppel algorithm or by applying the
representation technique again to obtain an efficient (but still exponential) algorithm. The
problem is transformed into several smaller problems that can be solved by classical means.

How to determine the number of levels of the algorithm. The number of times we apply
the representation technique is motivated by the goal to obtain an algorithm of minimal
running time. We assume that 4|` and ` = n

2 and choose M as an integer of size O
(
2`
)
.

In order to create the lists L1,L2 that correspond to vectors of length n and weight `/2
satisfying (4.2), we may follow the classical approach: We split the knapsack in two and
enumerate vectors of half length and half weight which means that we create bottom lists
of B =

(n/2
`/4

)
= O

(
20.406n

)
elements. We then apply a merge-join algorithm to obtain an

expected number of
(
n
`/2

)
/M ≈ O

(
20.311n

)
elements for the lists L1,L2. The cost is then

Õ
(
20.406n

)
in time and memory given by the size of the bottom lists. However, if we apply

the representation technique again, we can diminish these cost as we see in the next section.

Remark on the complexity notation. We aim to study and improve time and memory
requirements in the asymptotic case and hence apply two simplifications when analysing the
complexity. While the actual complexity may be given as a sum of partial cost we can
compute the overall cost by the maximal term. In the paragraph above, for example, the
overall memory requirement is given by |L1| + |L2| + 2 · B = O (max(|L1|, |L2|, B)). We do
also neglect polynomial and logarithmic factors by use of the soft-O notation, denoted by
Õ (.). It conceals constants as well as logarithmic and polynomial factors in n. Logarithmic
and polynomial factors appear in our algorithms due to sorting, addition and storage of the
elements as well when we need to repeat to create the bottom lists. The constants change
slightly if the assumptions such as 4 |n or 8 |n are not satisfied.
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The presented complexity analysis provides thereby a comparison in the asymptotic case and
a theoretical recommendation for very large n. In practice, the polynomial and logarithmic
factors due to sorting, the number of lists, the storage of elements etc. have to be taken into
account and influence the memory cost and time consumption considerably.

4.1. Distribution of modular sums

Given a large integer M and a set of n integers a = (a1, .., an) ∈ ZnM where ai are chosen
uniformly at random. We denote by B ⊂ ZnM the set of all vectors y and study the
distribution of the values a · y =

∑n
i=1 aiyi mod M . The present section shows that the

values a · y mod M behave well for almost all a in the sense that: For fixed R ∈ ZM ,
there are B/M sums

∑n
i=1 aiyi (mod M) on average that are congruent to R mod M . The

proportion of knapsacks a = (a1, .., an) ∈ ZnM for which this is not the case is exponentially
small. We derive these results from the following observations.

Let Na(B, R) denote the number of solutions y ∈ B of a · y ≡ R mod M ,

Na(B, R) =

∣∣∣∣∣
{
y ∈ B such that

n∑
i=1

aiyi ≡ R mod M

}∣∣∣∣∣ .
Let Pa(B, R) denote the probability that a knapsack of elements a results in the value c

modulo M for a uniformly at random chosen partial solution y from B,

Pa(B, R) =
Na(B, R)

|B|
.

Our main tool to theoretically study the distribution of the scalar products is the following
theorem [NSS01]:

Theorem 4.1
For any set B ⊂ ZnM , the equality:

1

Mn

∑
a∈ZnM

∑
R∈ZM

(
Pa1,··· ,an(B, R)− 1

M

)2

=
M − 1

M |B|
(4.3)

holds.

The theorem shows that for almost all random knapsack a ∈ ZnM , the number of subsolutions
y that lead to a value R, Na(B, R), takes its expected value |B|M . Choosing M close to B (but
a bit smaller), we can thus expect to find one solution on average for almost all knapsacks.
We will now study the fraction of knapsacks for which this is not the case.
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Chapter 4. Representation-technique algorithm

Number of bad knapsacks. We fix an integer λ > 0 and define a bad knapsack as a random
modular knapsack that attains less thanM/λ values in ZM . We are interested in the number,
F (λ), of such bad random modular knapsacks within all Mn possible choices for a. If we
count only the bad knapsacks on the left side of (4.3), we derive that

F (λ)
∑
R∈ZM

(
Pa1,..,an(B, R)− 1

M

)2

≤ M − 1

M |B|
Mn . (4.4)

We can lower bound the sum using the following observations. Denote by N0 the number
of values R which are never attained for a bad knapsack and define PR = Pa1,..,an(B, R).
We split the sum into M/λ values for which PR 6= 0 and N0 := λ−1

λ M summands for which
PR = 0 which leads to:

∑
R∈ZM

(
PR −

1

M

)2

=
∑

R∈ZM ,PR 6=0

(
PR −

1

M

)2

+
N0

M2

=
∑

R∈ZM ,PR 6=0

(
P 2
R −

2PR
M

)
+
M −N0

M2
+

N0

M2

=
∑

R∈ZM ,PR 6=0

P 2
R −

2

M

∑
R∈ZMPR 6=0

PR︸ ︷︷ ︸
1

+
1

M

=
∑

R∈ZM ,PR 6=0

P 2
R −

1

M
.

As
∑

R∈ZM ,PR 6=0 PR = 1, we have that
∑

R∈ZM ,PR 6=0 P
2
R ≥ M/λ · (λ/M)2 = λ/M . It follows

that ∑
R∈ZM

(
PR −

1

M

)2

≥ λ− 1

M

and together with (4.4) we obtain that

F (λ) ≤ M − 1

(λ− 1)|B|
Mn . (4.5)

The fraction becomes arbitrarily small choosing M slightly smaller than |B| and λ large
enough.
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4.2. Two-level representation-technique algorithm

4.2. Two-level representation-technique algorithm

In order to find the solution x ∈ {0, 1}n of weight ` = αn to the problem

n∑
i=1

aixi = S , (4.6)

Howgrave-Graham and Joux [HGJ10] propose to apply the representation technique twice:
We suppose that ` = n

2 and that 4|`. At first the solution is represented by tuples of vectors
of weight `/2 and a modular constraint with respect to a modulus M1. Each of the partial
solutions is then again represented by tuples of vectors of weight `/4 that satisfy a modular
constraint with respect to a second modulus M2. We therefore search a representation of
the solution as a set of four vectors x(j) each of length n and weight `/4 such that x =

x(1) + x(2) + x(3) + x(4). The six subproblems are:

a · x(j) ≡ Rj mod M2 (4.7)

for j = 1, 2, 3, 4 where x(j) ∈ {0, 1}n is of weight `/4 and

a · (x(1) + x(2)) ≡ R mod M1M2 and
a · (x(3) + x(4)) ≡ S −R mod M1M2

(4.8)

where x(1)+x(2) and x(3)+x(4) have weight `/2. The targets R and R1, R3 are chosen uniformly
at random in ZM1M2 and ZM2 , respectively. The other targets are set to: R2 = R − R1

mod M2 and R4 = S − R − R3 mod M2. Figure 4.2 illustrates the tree of subproblems we
have to solve in order to find the solution to the original knapsack problem.

The new algorithm performs the following steps: Each subproblem (4.7) at the bottom of
the tree is solved by a classical algorithm, e.g., the Schroeppel-Shamir algorithm, creating four
lists L(2)

j . As we want to solve modular knapsacks, the algorithm has to run several times for
each list with modified targets as explained in Section 2 and demonstrated by Algorithm 4.2.

a · x(1) ≡M2 R1 a · x(2) ≡M2 R2 a · x(3) ≡M2 R3 a · x(4) ≡M2 R4

a · (x(1) + x(2)) ≡M1 R a · (x(3) + x(4)) ≡M1 S −R

a · (x(1) + x(2) + x(3) + x(4)) = S

Figure 4.2.: Tree of subknapsack problems.
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The next step is to join the lists and to keep elements

x(1) + x(2) ∈ L(1)
1 = L(2)

1 ./ L(2)
2 and

x(3) + x(4) ∈ L(1)
2 = L(2)

3 ./ L(2)
4

of weight `/2 that fulfil (4.8). A final join between L(1)
1 and L(1)

2 creates elements x =

x(1) + x(2) + x(3) + x(4) for which

a · (x(1) + x(2) + x(3) + x(4)) ≡ S mod M1M2

by construction. If equality holds over the integers and x is of weight `, the algorithm has
found the solution to (4.6). If no solution is found, new targets are chosen and the above steps
are repeated. Algorithm 4.1 presents the technique. It is a variation of [HGJ10, Algorithm 5]
for the case ` = n

2 .

Algorithm 4.1: Two-level representation technique
Input: a = (a1, .., an), S, M1, M2, weight of solution `
Output: x such that a · x = S

Split knapsack a into two disjoint sets a(1) and a(2).
List B1 ← Compute all sums of `/8 elements w.r.t a(1).
List B2 ← Compute all sums of `/8 elements w.r.t a(2).

Repeat

Choose random elements R ∈ ZM1M2 , R1, R3 ∈ ZM2

Set R2 = R−R1, R4 = S −R−R3 mod M2

List L(2)
1 ← create-base-list(B1,B2, R1,M2, `/4) (see Alg. 4.2)

List L(2)
2 ← create-base-list(B1,B2, R2, M2, `/4)

List L(2)
3 ← create-base-list(B1,B2, R3,M2, `/4)

List L(2)
4 ← create-base-list(B1,B2, R4,M2, `/4)

List L(1)
1 ← merge-join(L(2)

1 , L(2)
2 , M1, R, `/2) (filter for vectors of length `/2)

List L(1)
2 ← merge-join(L(2)

3 , L(2)
4 , M1, S −R mod M1, `/2)

x ← merge-join(L(1)
1 , L(1)

2 , S, `) (filter for vectors of length `)

done about log2(M1M
2
2 ) times ;

Choice of the moduli To ensure a good probability of success, we are interested in choosing
the applying modular constraints not too high such that we can still find representations. At
the same time, a larger modular constraint keeps the lists small. We chooseM2 as a prime close
to the number of representations at the second level, N2, i.e., |M2| / N2 =

(`/2
`/4

)
= Õ

(
2
`
2

)
.
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Algorithm 4.2: Create base list
Input: Lists Bj of disjoint sums of `/8 knapsack elements, target R, module M ,

weight of solution `/4
Output: List L of elements x of weight `/4 such that a · x ≡ R mod M

For each Target ∈ {R+ k(M − 1) | k = 1, .., (n/4− 1)}
L ←merge-join(B1,B2,M,Target, `/4) (compute concatenation of vectors)

The elements in the middle level satisfy

a · (x(1) + x(2)) ≡ R1 +R2 ≡ R mod M2 and
a · (x(3) + x(4)) ≡ R3 +R4 ≡ S −R mod M2 .

If M2 is co-prime to M1, it is sufficient to check if

a · (x(1) + x(2)) ≡ R mod M1 and
a · (x(3) + x(4)) ≡ S −R mod M1

to satisfy (4.8) due to the Chinese reminder theorem. We choose the applying modular
constraints on the first level of order of the number of representations N1 =

(
`
`/2

)
. The

partial modulus M1 is a prime such that |M1M2| / N1 =
(
`
`/2

)
= Õ

(
2`
)
and we obtain

|M1| = Õ
(

2
`
2

)
. In this way, the expected size of the intermediate lists is kept small while

we can still expect one representation on average for almost all targets. We also want to
ensure that the intermediate knapsacks are random which is why we need M1M2 < 2n. The
reduced knapsack weights ai (mod Mi) can then be assumed to be equally distributed values
in ZM1M2 .

4.2.1. Minimal time and memory complexity in the balanced case

We assume that ` = n
2 and that 8|`. The first step is to give an estimation for the complexity

of algorithm 4.2 that creates the baselists. It searches elements of length n and weight `
4 that

satisfy (4.7). To this purpose it creates lists of size

B2l =

(
n/2

`/8

)
≈ Õ

(
20.272n

)
containing all possible vectors of length n

2 and weight `/8. The number of collisions CB
between those lists is of size B2

2l/N2 ≈ 20.294n on average. We expect that

L(2) =

(
n

`/4

)
/N2 ≈

(
n

`/4

)
/2

`
2 = Õ

(
20.294n

)
elements are found for each list L(2)

j . We estimate the running time of algorithm 4.2 as

Õ
(

max(L(2), B2l, CB)
)

= Õ
(
20.294n

)
.
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The algorithm does also perform a repeated call of a merge-join routine that uses a sorting
algorithm. These steps introduce logarithmic and polynomial factors in n which we omit in
the asymptotic analysis. As we solve modular knapsacks, we have to repeat these steps with
changing targets as explained in section 2. This adds a polynomial factor of order n to the
time which is neglected if we use the Õ-notation.
The time to create lists L(1)

1 = L(2)
1 ./ L(2)

2 and L(1)
2 = L(2)

3 ./ L(2)
4 of the next level is of

order max(L(2), L(1), C2) where

C2 ≈ (L(2))2/N1 = Õ
(
20.337n

)
is the expected number of collisions and L(1) the expected number of colliding elements of
correct weight. We expect to find

L(1) =

(
n

`/2

)
/N1 = Õ

(
20.311n

)
elements for L(1)

1 ,L(1)
2 of correct weight. A last merge then takes time Õ

(
max(L(1), C1)

)
where

C1 ≈ (L(1))2/(2n/N1) = Õ
(
20.123n

)
is the expected number of collisions that we have to check in order to find the solution.
The algorithm is of asymptotic running time

T2levels = Õ
(

max(B2l, CB,max
j
|L(2)
j |, C2,max

j
|L(1)
j , C1)

)
using space

M2levels = Õ
(

max(B2l, L
(2), L(1))

)
.

We could also use a Shamir Schroeppel algorithm to create the elements at the second level.
The term B2l then stands for the time needed by Schroeppel-Shamir to create intermediate
lists (see Sect. 3.2). Assuming that each list has a size close to its expected value, the expected
running time is:

T2levels =

Õ

(
max(B2l,

B2
2l

M2
, L(2),

(L(2))2

M1M2
, L(1), (L(1))2 · M1M2

2n
)

)
.

(4.9)

We see that the overall memory requirement is Õ
(
20.311n

)
dominated by the number of

elements of the first level. The time complexity is dominated by the join to enumerate them
and is of order1 Õ

(
20.337n

)
.

A third application of the representation technique does not change these cost and does
hence not ameliorate the time complexity. It can however reduce the size of the lists. A more

1The cost to merge the lists were neglected in [HGJ10] and corrected in [MM11, BCJ11]
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4.2. Two-level representation-technique algorithm

efficient way to reduce the memory requirement, at the cost of longer intermediate calculations,
is to choose larger moduli. The total running time still stays the same in the asymptotic sense.
Above we chose them as large as possible while still expecting one representation per random
target. Section 4.2.2 proposes a memory efficient algorithm of same running time comparing
a two-level with a three-level algorithm.

Three levels of representations. For a third level of representations, we introduce a third
modulus M3 and set the constraints at the second and first level to M2M3 and M1M2M3,
respectively. The number of representations at the third level is

N3 =

(
`/2

`/4

)
= Õ

(
2
`
4

)
.

The expected number of elements at the third level is:

L(3) =

(
n

`/8

)
/N3 ≈

(
n

`/8

)
/2

`
4 = Õ

(
20.212n

)
,

which are obtained from base lists of size

B3l =

(
n/2

n/16

)
= Õ

(
20.169n

)
.

The running time of algorithm 4.2 is of order

max (L(3), B3l, CB) = Õ
(
20.212n

)
where CB ≈ (B3l)

2

M3
. A join of lists at level three treats about

C3 ≈
(L(3))2

M2
= Õ

(
20.30n

)
elements. Let us assume that each list has a size close to its expected value. The average
running time is then:

T3levels

= Õ

(
max(B3l,

B2
3l

M3
, L(3),

(L(3))2

M2
, L(2),

(L(2))2

M1
, L(1), (L(1))2 · M1M2M3

2n
)

)
= Õ (C2) .

(4.10)

The expected memory requirement is

M3levels = Õ
(

max(B3l, L
(3), L(2), L(1))

)
= Õ

(
L(1)

)
.
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Note that we do not gain in time nor in memory as the number of collisions C2 and the size
of the lists at level one, L(1), are unchanged. We can change the memory requirement as
explained in section 4.2.2.

4.2.2. Improvements on the memory requirement

We so far assumed that memory is plentiful. To spare memory in practice, we propose two
techniques. An efficient join operation, used as subroutine in the above two-level algorithm,
needs only to store one of the starting lists while the elements of the second list are created
and joined on the fly. This has no impact on our asymptotic analysis.
Additionally, we can choose a slightly larger modulus per level thus reducing the expected

size of the starting lists. More precisely, we choose an integer m co-prime to the modulus
M . Beside the normal constraint w.r.t. M , we take successively every value in Z/mZ and
keep only elements in a list at each run that satisfy both constraints. By Chinese remainder
theorem, all elements fulfil a constraint modulo Mm. Heuristically, we can assume that the
lists are smaller by a factor m. A join between these shortened lists creates a list in the
upper level that is smaller by exactly the same factor than the starting lists. To recover all
elements in the upper level, we repeat the process with the next value in Z/mZ. The number
of repetitions is m.
The total running time T2levels = Õ (C2) derived in section 4.2.1 stays the same. We can

apply this technique in both levels of the two-level algorithm and can reduce the values L(i).
The size of the bottom lists determines the minimal memory requirement.

Reduce lists. We start with the lists at the first level and increase the modular constraints:
M = M1M2 ≈ N1 and m ≈ Λ for real parameter Λ ≥ 1 (exponential in n) such that
gcd(M,m) = 1. The parameter is not completely free as we require a same overall running
time T2levels. The solution vector is searched within two lists of size L(1)

Λ which reduces the
expected number of collisions by a factor Λ. We repeat Λ times with changed target modulo
m to find the same number of collisions C1 than before. Let Ti denote the time to create the
lists of level i. The time to find the solution can then be computed as

T0 = Λ ·max(
C1

Λ
, T1)

where

Λ · T1 = Λ ·max(
L(1)

Λ
,
C2

Λ
, T2) = max(L(1), C2,Λ · T2) .

The memory in the first level is now reduced but the overall memory requirement is still
determined by the lists at the second level, we apply the same idea again. Let ∆ ≥ 1 be a real
parameter. We choose a second small modulus m′ ≈ ∆ co-prime to M2 ≈ N2. This reduces
the expected size of the lists to L′(2) = L(2)/∆. The drawback is that we can only expect to
find C2/∆ collisions for the lists in the level above. However, if we repeatedly create lists of
size L′(2) with changed target modulo m′, we create all L(1) elements in the upper level after
∆ iterations.
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The time to create all lists of level two of size L(2) is given by the time to construct ∆ times
lists of expected size L′(2):

T2 = ∆ ·max(
L(2)

∆
,
CB
∆
, B2l) = max(L(2), CB,∆ ·B2l) .

The running time is unchanged if T0 = T2levels, that is, if

T0 = max(C1, L
(1), C2,Λ · L(2),Λ · CB,Λ ·∆ ·B2l)

equals
T2levels = Õ (C2) .

As L(2) ≤ CB, we need to ensure that

C2 ≥ Λ ·max(CB,∆ ·B2l) = Λ ·B2l max(
B2l

N2
,∆) .

We can thus choose a maximal ∆ = B2l
N2

leading to a maximal modulus M2 = B2l. The
memory requirement is down to

max(L′(1), L′(2), B2l) = max(
L(1)

Λ
,
L(2)

∆
, B2l) .

which is minimal for L(1)

Λ = L(2)

∆ . We obtain a larger modulus for the first level by a factor of
Λ = L(1)

L(2)
B2l
N2

such that all stored lists are of same size B2l. We remark that in this way the
cost to create the elements at the second level is asymptotically the same than to store them.
The difference in practice lies in logarithmic factors caused by storage and sorting.

Minimal running time with reduced memory requirement. For slightly larger modular
constraints,

|mM1M2| ≈ 20.540n and |m′M2| ≈ 20.272n,

the memory requirement drops to B2l ≈ L′(1) ≈ L′(2)) = Õ
(
20.272n

)
. We need to repeat the

join routines with changed targets about m′M2/2
n
4 = 20.22n times for the second level and

about mM1M2/2
n
2 = 20.04n times for the last join. As the minimal memory is blocked by the

bottom lists, the gain in memory is optimal. The running time is unchanged at Õ
(
20.337n

)
.

In practice, we need to store only one of the lists that we join. This does however not change
the asymptotic memory requirement. As the minimal size of the lists is determined by the
bottom lists, we can try to add a third level of decomposition.

Reduce memory for three levels of representations. We want to permit slightly larger
moduli than the number of representation per level. To this end we choose three moduli
m,m′ and m′′ of size κ,∆ ≥ 1 and Λ ≥ 1, respectively, that are co-prime to the moduli. The
applying modulo per level three, two and one are:

m′′M3 ≈ κ ·N3, m′′M2M3 ≈ ∆ ·N2, mM1M2M3 ≈ Λ ·N1 .
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The reasoning to bound the parameters is similar to the analysis above. We want to minimize
the expected memory requirement per iteration given by

max(L′(1), L′(2), L′(3), B3l) = max(
L(1)

Λ
,
L(2)

∆
,
L(3)

κ
,B3l)

under the constraint that the overall asymptotic running time stays the same as T3levels. The
time to create the lists at level two becomes

T2 = ∆ ·max(
L(2)

∆
,
C3

∆
, T3) where

T3 = κ ·max(
L(3)

κ
,
CB
κ
,B3l) .

To obtain the same asymptotic running time, we require that

T0 = max(C1, L
(1), C2,Λ · L(2),Λ · C3,Λ ·∆ · L(3),Λ ·∆ · CB,Λ ·∆ · κ ·B3l)

equals
T2levels = Õ (C2) .

As the number of colliding elements is always larger than or equal to the number of consistent
elements, we can simplify the constraint to

C2 ≥ max(Λ · C3,Λ ·∆ · CB,Λ ·∆ · κ ·B3l) .

The average value L(1) is dictating the asymptotic space complexity so far. By the equation
above, we can reduce the memory at the first level by a maximal Λ for which holds that
C2 ≈ Λ ·C3. In this way, L

(1)

Λ = Õ
(
20.274n

)
. Comparing the value to the result for a two-level

algorithm, where all lists are of size Õ
(
20.272n

)
, with larger moduli, we see that we do not

attain a better result here.

4.2.3. Minimize time complexity in the unbalanced case

To describe the asymptotic complexity in the more general case, that is, where ` = αn, we
first write the various partial cost in terms of α and n using the binary entropy function of
section A.1 in the appendix:

h(α) = −α log2(α)− (1− α) log2(1− α) .

Let L(2) be the size of the maximal list of the bottom level, that is, L(2) = max(|L(2)
j |) for

j = 1, 2, 3, 4. The expected value of L(2) in the asymptotic case is
(
n
`/4

)
/M2 ≈ 2n(h(α/4)−α/2).

The partial cost B2l of a classical algorithm that creates the bottom lists becomes B2l =(n/2
`/8

)
≈ 2

n
2

(h(α/4). Let L(1) denote the size of the maximal list of {L(1)
1 ,L(1)

2 } at the middle
level. Its expected value is

(
n
`/2

)
/(M1M2) ≈ 2n(h(α/2)−α). The expected number of collisions
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during the join of lists L(2)
j are C2 ≈ 2n(2h(α/4)−3/2α). We expect C1 ≈ 2n(2h(α/2)−α−1) colliding

elements between the lists L(1)
1 and L(1)

2 . The overall memory requirement is then given by

M2levels = Õ
(

max(L(2), L(1))
)

= Õ
(

2m(α)n
)

where

m(α) = max(h(α/4)− α/2, h(α/2)− α) .

The algorithm is of asymptotic running time

T2levels = Õ
(

max(L(2), L(1), B2l, C1, C2)
)

= Õ
(

2t(α)n
)

where

t(α) = max(h(α/4)− α/2, h(α/2)− α, h(α/4)/2, 2h(α/2)− α− 1, 2h(α/4)− 3/2α) .

Figure 4.3 shows the individual cost (the terms of t(α)) of the two-level representation algo-
rithm for α varying between 0 and 1.
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Figure 4.3.: Asympt. time complexity for 2-level algorithm where h(α) = −α log2(α)−(1−α) log2(1−
α) is the binary entropy function.

For α = 0.5, we rediscover the result of the previous section. The curve for C2 is dominating
the time complexity. We will now determine the algorithm that achieves an optimal running
time for α 6= 0.5. Looking at the graph, we see that for α ≤ 0.626, C2(α) is dominating while
for greater α the cost to create the bottom lists, B2l, determines the complexity. In this case,
we have three options. First, we can change to the complementary knapsack a · (1−x) whose
solution has weight (1 − α)n. Second, we can add an additional level of representations to
our algorithm to lower the cost at the bottom. Third, for small α (or large α due to the
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complement trick), it might even be sufficient to use a one-level algorithm. The best choice
is given by the minimal complexity.

An algorithm that uses three levels of representation technique starts to enumerate vectors
of length n and weight `/8 by Schroeppel-Shamir compliant to a modular constraint. We call
the respective modulus M3 and choose it of a size close to the number of representations:
|M3| ≈

(`/4
`/8

)
= Õ

(
2`/4

)
. The resulting lists are L(3)

j for j = 1, .., 16 and are of expected size

L(3) = max{L(3)
j } ≈

(
n
`/8

)
/M3 = Õ

(
2(h(α/8)−α/4)n

)
. The cost to enumerate the bottom lists

is given by max(B3l, L
(3)) where B3l ≈

(n/2
`/16

)
= Õ

(
2(h(α/8) n

2
)
)
. We then obtain the elements

of the above level by a merge-join in expected time C3 ≈ (L(3))2/M2 = Õ
(
2(2h(α/8)−3/4α)n

)
.

A simple one-level algorithm creates the lists L(1)
j , j = 1, 2, by means of a Shroeppel-Shamir

in time Õ
(
max(B1l, L

(1))
)
where B1l ≈

(n/2
`/4

)
= Õ

(
2(h(α/2)) n

2

)
.

In figure 4.4 we added the new terms B1l, B3l, L
(3), C3. If we compare the cost L(1), C2

and B2l for small α (α ≤ 0.341), we see that a one-level algorithm is in favour as the two
blue curves for L(1), B1l lie below the green line for C2. This has to be compared to large α
as we could also solve the complementary knapsack by a two-level or three-level algorithm.
For α ≥ 0.681, we see that the curve of B2l is above C3 which is the maximum cost for a
three-level algorithm.
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Figure 4.4.: Asympt. time complexity for 1-, 2- and 3-level algorithm where h(α) = −α log2(α) −
(1− α) log2(1− α) is the binary entropy function.
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In general, if we compute the minimum over

{T2levels(α), T1level(α), T3levels(α), T2levels(1− α), T1level(1− α), T3levels(1− α})

for each α, we obtain the minimal complexity

T (n) = 2t(α)+o(n)

that one can reach by representation technique. The result is depicted in figure 4.5.
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Comp(α)
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Figure 4.5.: Minimal time complexity to solve the knapsack problem by representation-technique
algorithm of varying number of levels; Comp(.) = min(T2levels(.), T1level(.), T3levels(.)).

The largest coefficient for the time complexity occurs for α = 0.5. Due to the possibility to
switch to the complementary knapsack, the complexity to find a solution of weight α is the
same as for a weight 1− α which leads to a symmetric graph.

We see that a change of the number of levels as well solving the complementary knapsack
may be advantageous if we simply compare the exponents of the exponential in the asymptotic
time complexity. The difference may then vary up to 0.025 as is the case for α = 0.397.
We observe a peak in the complexity at α = 0.337 which is the value for which a 1-level

algorithm on the given knapsack problem becomes less efficient than a three-level algorithm
on the inverse knapsack. The analogue happens for α = 0.663. This is not consistent to
the understanding and suggests that the algorithms are not optimal. Also for a practical
implementation slightly varied limits for α are probable. In the following chapter, we will
extend the representation technique. The running time of the new algorithm lies always
below the curve in 4.5 as shown in figure 5.3.
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Extended-representation-technique
algorithm

The idea of representing a solution of a knapsack problem by two binary vectors of full length
and of half weight can be extended. Instead of decomposing the original solution into two
binary coefficient vectors, we allow coefficients {−1, 0, 1} for the partial solutions. By adding
(a few) −1 coefficients, we search for partial solutions of slightly increased weight. This
provides us with an additional degree of freedom as it increases the number of representations
per solution and allows in return to reduce the size of the intermediate lists of our new
algorithm leading to a better running time in the end.

Increased number of representations per solution. We choose a parameter α where αn is
the number of -1 positions per partial solution. A representation of a solution x is now a
tuple (y, z) ∈ {−1, 0, 1}n×{−1, 0, 1}n such that x = y+ z and where y, z are of same weight
containing `/2 + αn 1’s and αn -1s each. Their Hamming weight, wt(.), equals `/2 + 2αn.
Figure 5.1 shows one possible representation.
To compute the number of representations, we count the number of ways to represent each

xi ∈ {1, 0} of the solution as a tuple (yi, zi) such that yi + zi = xi. We can split the ` 1s
into pairs (0, 1) or (1, 0) leading to

(
`
`/2

)
possibilities. The n − ` 0s can be written as pairs

(0, 0), (1,−1) or (−1, 1). We choose each αn tuples (1,−1) and (−1, 1). The multinomial(
n−`

αn,αn,n−`−2αn

)
counts the choices how to decompose the zeros of a solution.

wt(x) = `

x

wt(y) = `/2 + 2αn
y

wt(z) = `/2 + 2αn

z

Figure 5.1.: One representation of a solution x = y + z. The striped area indicates positions of 1s
and the dotted area indicates positions of -1s.
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The total number of representations is the product of these possibilities:

NBCJ =

(
`

`/2

)(
n− `

αn, αn, n− `− 2αn

)
. (5.1)

We see that the number of representations is increased for α > 0 by the second factor
in (5.1) compared to (4.1). Remember that, in the representation-technique algorithm, the
modular constraints allowed us to reduce the size of the intermediate lists and that they
were chosen close to the number of representations. A larger number of representations has
therefore the potential to reduce the lists further and to gain an improved complexity.

A first intuition. Consider an algorithm that receives two lists, L1,L2, of elements y, z that
contain each (`/2 + αn) 1s and αn -1s and satisfy

a · y ≡ R and a · z ≡ S −R mod M where (5.2)

|M | ≈ log2NBCJ . The lists are of expected size

L ≈

(
n

`/2+αn,αn,n−`−2αn

)
M

if we assume that a · y and a · z are uniformly distributed values in ZM . A unique solution
x = y + z such that a · x = S over the integers can then be found by sorting the lists and
searching for collisions in time L logL. As we want to ensure that a · y and a · z are random
knapsacks, we constrain M to be smaller than the size of the knapsack elements, M < 2n.
The optimal value for α in the asymptotic case is then 0.05677 for which the lists are of
minimal size, L ≈ 20.173n.

Unfortunately, we forgot to take into account the cost to create the starting lists L1 and L2.
Classic means realize this task by creating base lists B of all elements of length n

2 containing
(`/2 + αn)/2 1s and αn/2 -1s and searching for collisions. The cost is then determined by
max(|B|,E [|L1|] ,E [|L2|]) where

|B| =
(

n/2

(`/2 + αn)/2, αn/2, (n− `− 2αn)/2

)
.

For the above given α, the base lists are of large size |B| = 20.586n. The size of B is dominating
the cost and is minimal for α = 0 which is the standard representation technique. We do
not achieve a faster algorithm than proposed by Howgrave-Graham and Joux [HGJ10] in this
way. In order to obtain a more efficient algorithm, we need to render the creation of the lists
L1 and L2 more efficient. We propose to proceed as described in the following section.
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5.1. Three-level extended-representation-technique algorithm

For simplicity, we assume that 8|`. The asymptotic analysis of the complexity is not affected
by this restriction. The first algorithm, we propose, introduces three levels in which we apply
the representation technique meaning that we represent the solution by two vectors in the
first level. As the cost to create those elements is too high, we apply the same idea again and
represent the partial solutions in the second level, each by two vectors. Splitting up again,
introduces the third level of representations which we find by classical means. In each of the
three levels, we allow a different number of -1s and impose modular constraints using moduli
M1,M2,M3. In each level, the number of ones of the intermediate solution of the previous
level is halved and a number of -1s and 1s is added given by the parameters α, β, γ. Starting
from a solution of ` ones, the first level representations have

n
′
1 = `/2 + αn 1s and we add
n
′
−1 = αn -1s.

At the second level, we are interested in vectors having

n
′′
1 = n′1/2 + βn = `/4 + αn/2 + βn 1s and
n
′′
−1 = n′−1/2 + βn = αn/2 + βn -1s.

These vectors are represented by vectors of

n
′′′
1 = n

′′
1/2 + γn = `/8 + αn/4 + βn/2 + γn 1s and

n
′′′
−1 = n

′′
−1/2 + γn = αn/4 + βn/2 + γn -1s.

Corresponding to the partial solutions, we have to solve a knapsack problem. Figure 5.2
shows the successive decomposition of the original knapsack into 2, 4 and finally 8 subprob-
lems. For each of the 7 decompositions, we choose one random target for the left subproblem
and set the constraint of the right subproblem to fulfil the constraint of the upper level
modulo the current modulus similar to (5.2). For the first level, we draw a random value
R

(1)
1 ∈ ZM1M2M3 for the left side and set the right target to R(1)

2 = S −R(1)
1 mod M1M2M3.

The two problems of the first level are: We search vectors z(1) on the left side and vectors
z(2) on the right side of weight (n

′
1, n

′
−1) for which

a · z(j) ≡ R(1)
j mod M1M2M3 (5.3)

for j = 1, 2. In this way we know that

a · (z(1) + z(2)) ≡ S mod M1M2M3 .

The probability that equality holds over the integers is close to (M1M2M3)/2n.
We proceed in an analogue manner for the second level by picking two random values

R
(2)
1 ∈ ZM2M3 and R

(2)
3 ∈ ZM2M3 and setting R

(2)
2 = R

(1)
1 − R

(2)
1 ∈ ZM2M3 and R

(2)
4 =

R
(1)
2 −R

(2)
3 ∈ ZM2M3 .
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σ(1) σ(2) σ(3) σ(4) σ(5) σ(6) σ(7) σ(8)

+ + + +

+ +

Solution x
corresponding to

∑
j σ

(j) = S

≡M1M2M3 R
(1)
1 ≡M1M2M3 S −R

(1)
1

≡M2M3 R
(2)
1 ≡M2M3 R

(1)
1 −R

(2)
1

+γn

+βn

+αn

Figure 5.2.: Tree of subproblems of a three-level algorithm applying the extended representation tech-
nique.

This determines the four subproblems of the second level: We search vectors y(j) of weight
(n
′′
1 , n

′′
−1) that satisfy:

a · y(j) ≡ R(2)
j mod M2M3 (5.4)

for j = 1, 2, 3, 4. The joined elements y(1) +y(2) and y(3) +y(4) satisfy the modular constraint
of the above level with probability M2M3/(M1M2M3) = 1/M1.
Finally, the third level constructs elements x(j) ∈ {0, 1}n of weight (n

′′′
1 , n

′′′
−1) with their

respective constraint:
σ(j) := a · x(j) ≡ R(3)

j mod M3 (5.5)

for j = 1, .., 8 where R(3)
j are random elements in ZM3 created as before.

The elements at the third level are built from the base lists B that contain vectors of half
length:

B = {ε ∈ {0, 1,−1}
n
2 with n

′′′
1 /2 1s and n

′′′
−1/2 -1s} .

Three levels of consecutive merge-joins reveal the solution to the original knapsack if it dis-
covers an element x = x(1) + ..+ x(8) of weight ` such that a · x = S over the integers.

Modular constraints. We follow the previous strategy of section 4.2 and choose the applying
modular constraint of a size close to the number of representations, Ni for level i = 1, 2, 3:
M3 ≈ N3, M2M3 ≈ N2, M1M2M3 ≈ N1. This ensures that each solution appearing at a
given level is represented by a single partial solution at the previous level on average. A
larger modular constraint would lead to a loss of solutions from one level to the next while for
smaller constraints each solution would be constructed many times thus increasing the overall
cost unnecessarily.
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5.1. Three-level extended-representation-technique algorithm

The number of representations at each level are computed analogously to (5.1) as follows:

N3 ≈
( n′′1
n′′1/2

)
·
(

n′′0
γn,γn, ?

)
·
( n′′−1

n′′−1/2

)
,

N2 ≈
( n′1
n′1/2

)
·
( n′0
βn,βn, ?

)
·
( n′−1

n′−1/2

)
and

N1 ≈
(
`
n/4

)
·
(

n−`
αn,αn ?

)
.

(5.6)

In the multinomials above ? counts the number of zeros that are represented at zeros in the
lower level. E.g., for a term

(
a

b,c,?

)
, we replace ? by a− b− c.

Estimation of list size and number of collisions. We denote by L(i)
j the j-th list in level

i and by L(i) the estimated size of the lists of level i. We assume that the elements in
the lists of the respective lower level are distributed in the same way for neighbouring lists.
For independently at random chosen targets in level i, we can then expect that all lists are
of same size in level i. The eight lists L(3)

j on the bottom level can be constructed using a
straightforward adaptation of the simple birthday paradox algorithm (or by use of Schroeppel-
Shamir). It suffices to split the n knapsack elements into two random subsets of size n/2 and
to assume that the 1s and -1s are (almost) evenly distributed between the two halves. The
probability of this event is the inverse of a polynomial in n:( n/2

n′′′1 /2,n
′′′
−1/2,n

′′′
0 /2

)2(
n

n′′′1 ,n
′′′
−1,n

′′′
0

) ≈ 2

πn
√
st(1− s− t)

= O (1/n)

where s := n′′′1 /n and t := n′′′−1/n.

Thus by repeating polynomially many times, we recover all of L(3)
j with overwhelming

probability. The running time of the construction of each list L(3)
j is given by max(L(3), B3l)

where B3l =
( n/2
n′′′1 /2,n

′′′
−1/2,n

′′′
0 /2

)
is the size of the lists that have to be joined in a Schroeppel-

Shamir algorithm. Assuming that the sums a·x(j) for the elements x(j) in the lists are random
w.r.t the corresponding moduli M3 ≈ N3,M3M2 ≈ N2 and M3M2M1 ≈ N1, the expected
sizes of the lists are:

L(3) ≈

(
n

n′′′1 ,n
′′′
−1,n

′′′
0

)
N3

, L(2) ≈

(
n

n′′1 ,n
′′
−1,n

′′
0

)
N2

, L(1) ≈

(
n

n′1,n
′
−1,n

′
0

)
N1

.

These are only upper bounds since we ignore the fact that we discard solutions that cannot
be decomposed with the modular constraints of the lower level. The number of collisions, we
have to go through, in order to build the lists L(2)

j and L(1)
j can be estimated as

C3 ≈ (L(3))2/(N2/N3) and C2 ≈ (L(2))2/(N1/N2) ,

respectively. The solution can then be found with an additional number of collisions

C1 ≈ (L(1))2/(2n/N1) .
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Complexity for three levels. The overall running time of the algorithm is the maximum of
the individual costs and the construction of the eight lists, which gives:

Õ
(

max(B3l,max
j
|L(3)
j |, C3,max

j
|L(2)
j |, C2,max

j
|L(1)
j |, C1)

)
.

Assuming that each list has a size close to its expected value, the expected running time is:

T3levels-x =

Õ

(
max(B3l, L

(3),
(L(3))2

M2
, L(2),

(L(2))2

M1
, L(1), (L(1))2 · M1 ·M2 ·M3

2n
)

)
.

(5.7)

Since not all collisions need to be stored, the amount of memory required is:

M3levels-x = Õ
(

max(B3l, L
(3), L(2), L(1))

)
. (5.8)

Using Shamir-Schroeppel for the first step does reduce the first term in (5.8) to
√
B3l. As

the cost do not play an important role, we neglect this improvement in an asymptotic study.
The asymptotic complexity depends on the optimization parameters (α, β, γ) that determine
the optimal number of -1 coefficients per level. Section 5.1.1 presents numerical results which
show that the used memory can be decreased by adding a fourth level.

Complexity for four levels. We add a forth level of decomposition in the same way as done
for three levels. A new parameter δ manages the proportion of -1 coefficients in the forth level
that creates vectors of weight (n

′′′′
1 , n

′′′
−1) where n′′′′1 = n

′′′
1 /2 + δn and n′′′′−1 = n

′′′
−1/2 + δn. The

value B4l =
( n/2
n′′′′1 /2,n′′′′−1/2,n

′′′′
0 /2

)
counts the elements in the bottom lists from which we create

the lists L(4)
j for j = 1, .., 16. The elements fulfil a modular constraint modulo M4 of size of

the number of representations N4 where

N4 ≈
(
n′′′1
n′′′1 /2

)
·
(
n′′′−1

n′′′−1/2

)
·
(

n′′′0
δn, δn, ?

)
.

We expect that |L(4)
j | is of size L(4) ≈

( n
n′′′′1 ,n′′′′−1,n

′′′′
0

)
N4

for all j and estimate the number of
collisions between the forth and third level as C4 ≈ (L(4))2/(N3/N4). The overall running
time of a four-level algorithm is:

Õ
(

max(B4l,max
j
|L(4)
j |, C4, max

j
|L(3)
j |, C3,max

j
|L(2)
j |, C2,max

j
|L(1)
j |, C1)

)
.
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5.1. Three-level extended-representation-technique algorithm

The expected running time is:

T4levels-x =

Õ

(
(B4l, L

(4),
(L(4))2

M3
, L(3),

(L(3))2

M2
, L(2),

(L(2))2

M1
, L(1), (L(1))2 · M1 ·M2 ·M3 ·M4

2n
)

)
.

(5.9)

The amount of memory required is:

M4levels-x = Õ
(

max(B4l, L
(4), L(3), L(2), L(1))

)
. (5.10)

As observed for three levels, a Shamir-Schroeppel algorithm does need to store only lists of
size
√
B4l thus reducing the first term in the above memory cost. The term B4l is not relevant

in the asymptotic case which is why we consider a birthday paradox split with lists of size B4l.
The next section provides a numerical evaluation of the complexity for a three- and four-level
algorithm.

5.1.1. Parameters for a minimal running time

In this section, we analyse the asymptotic cost of the previously presented algorithms that use
the extended representation technique. We hence allow a small number of negative coefficients
for the partial solutions and obtain a smaller expected running time compared to a birthday
paradox algorithm or the simple representation technique.
Choosing α = β = γ = 0 in (5.7) and (5.8), we recover the simple representation technique

of section 4.2.1 of minimal time complexity Õ
(
20.377n

)
using memory Õ

(
20.311n

)
which we

care to ameliorate. Optimal parameters (α, β, γ) for our algorithms, based on the extended
representation technique, aim to minimize the time. We have already seen for the simple case
that increased constraints on the elements can reduce the memory requirement additionally.
Previous analysis [BCJ11] did only optimize the time component while we perform a more ex-
tensive investigation. We discover that adding a fourth level does lead to an algorithm of same
running time and reduced space Õ

(
20.289n

)
already.It is however more effective to increase

the size of the moduli at intermediate levels over the bound of the number of representations
as we have proposed in section 4.2.2. In this way, we derive a minimal space requirement of
Õ
(
20.279n

)
and same running time for the three-level algorithm.

Asymptotic approximations. In order to find parameters α, β, γ, δ that minimize the time
and memory, we approximate the binomials that appear in the terms of the individual cost.
We summarize the usefull results of section A.2. For large n:

log2

(
n

k

)
≈ n · h(k/n)
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where h(x) = −x log2(x) − (1 − x) log2(1 − x) is the binary entropy function of section A.1.
Also

log2

(
un

sn,sn,(1−2s)n

)
≈ n · a(u, s) and

log2

(
n

sn,tn,(1−s−t)n
)
≈ n · ã(s, t)

where we define

a(u, s) = u log2(u)− 2s log2(s)− (1− 2s) log2(1− 2s) and
ã(s, t) = −s log2(s)− t log2(t)− (1− s− t) log2(1− s− t) .

Using these asymptotic approximations, we can express all cost in terms of α, β, γ, δ, `/n and
n.
The number of representations in level i, Ni, can be approximated as

2n1+n−1+n·a(n0/n,χ) where n1, n−1 and n0 denote the numbers of 1s, 0s and -1s in the previous
level and χ is the proportion of additional -1s for level i. We obtain

log2(N4) ≈ n · ( `/n8 + α/2 + β + 2γ + a(1− `/n
8 − α/2− β − 2γ, δ)) ,

log2(N3) ≈ n · ( `/n4 + α+ 2β + a(1− `/n
4 − α− 2β, γ)) ,

log2(N2) ≈ n · ( `/n2 + 2α + a(1− `/n
2 − 2α, β)) and

log2(N1) ≈ n · (`/n + a(1− `/n, α)) .

(5.11)

The size of the lists at level i, L(i), are equal to 2n·ã(n1,n−1)/Ni in the asymptotic case.

log2(L(4)) ≈ n · ã( `/n16 + α/8 + β/4 + γ/2 + δ, α/8 + β/4 + γ/2 + δ) − log2(N4) ,

log2(L(3)) ≈ n · ã( `/n8 + α/4 + β/2 + γ, α/4 + β/2 + γ) − log2(N3) ,

log2(L(2)) ≈ n · ã( `/n4 + α/2 + β, α/2 + β) − log2(N2),

log2(L(1)) ≈ n · ã( `/n2 + α, α) − log2(N1) .

At the bottom level, we count either B3l or B4l elements where

log2(B4l) ≈ 0.5 · n · ã( `/n16 + α/8 + β/4 + γ/2 + δ, α/8 + β/4 + γ/2 + δ) or
log2(B3l) ≈ 0.5 · n · ã( `/n8 + α/4 + β/2 + γ, α/4 + β/2 + γ) .

The expected number of collisions becomes

log2(C4) ≈ 2 · log2(L(4)) − log2(N3) + log(N4) ,

log2(C3) ≈ 2 · log2(L(3)) − log2(N2) + log(N3) ,

log2(C2) ≈ 2 · log2(L(2)) − log2(N1) + log(N2) and
log2(C1) ≈ 2 · log2(L(1)) − 1 + log(N1) .

Conditions for optimisation. We assume that `/n ≤ 0.5 and search real values α, β, γ, δ in
the interval [0, 0.25] under the natural condition that all cost shall be positive,

0 < log2 L
(i) ≤ 1, 0 ≤ log2Ci ≤ 1, and 0 < log2B3l, log2B4l ≤ 1 ,
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5.1. Three-level extended-representation-technique algorithm

the intermediate knapsacks are random (log2N1 ≤ 1) and the weight of the vectors, the
number of non-zero coordinates, does never exceed their length:

`/2 + 2αn ≤ n ,

`/4 + αn+ 2βn ≤ n ,

`/8 + αn/2 + βn+ 2γn ≤ n and
`/16 + αn/4 + βn/2 + γn+ 2δn ≤ n .

The size of the applying modular constraint at the levels are of size of the number of represen-
tations except when noted otherwise. For variable size of moduli, we ensure that the product
of the moduli is smaller than the size of the numbers in the initial knapsack.

Minimize running time for three levels

Under the above presented conditions, we can now find optimal parameters1 that minimize the
running time depending on the weight of the solution vector `. Figure 5.3 shows the asymptotic
running time T3level-x = 2t(`/n)n+o(n). The factor t(`/n) in the exponent is considerably smaller
in comparison to a simple representation technique (section 4.2).

 0.2909

 0.337

 0.5 l/n

t(l/n) Simple
Extend.

Figure 5.3.: Compare asymptotic running time of basic and extended representation technique for
variable weight ` of the solution.

1Mathematica or Octave 3.2.4, function nelder_mead_min, http://www.octave.org
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We give more details for the equibalanced case, i.e., when `/n ≈ 0.5. The parameters

α = 0.0267, β = 0.0168, γ = 0.0029 ,

minimize2 the running time T3levels-x(α, β, γ) for which we obtain the following individual cost
and size of moduli:

B3l ≈ 20.266n, L(3) ≈ 20.291n, L(2) ≈ 20.279n,

L(1) ≈ 20.217n, M3 ≈ 20.241n, M2 ≈ 20.291n,

M1 ≈ 20.267n, C3 ≈ 20.291n, C2 ≈ 20.291n,

C1 ≈ 20.233n

(5.12)

for which M3 ≈ N3, M2M3 ≈ N2 and M3M2M1 ≈ N1. As a consequence, we find that both
the time and memory complexity are equal to Õ

(
20.291n

)
. However, we remark that γ is so

small that for any achievable knapsack size n, the number of −1s added at the last level is
0 in practice. Thus, in order to improve the practical choices of the number of −1s at the
higher levels, it is better to adjust the minimization with the added constraint γ = 0. This
leads to the alternative values:

α = 0.0194, β = 0.0119, γ = 0 .

With these values, we obtain:

B3l ≈ 20.231n, L(3) ≈ 20.295n, L(2) ≈ 20.284n, L(1) ≈ 20.234n,

M3 ≈ 20.168n, M2 ≈ 20.295n, M1 ≈ 20.272n,

C3 ≈ 20.295n, C2 ≈ 20.295n, C1 ≈ 20.204n

leading to an asymptotic time and space of Õ
(
20.295n

)
. If we only care for the running

time and assume that enough memory is provided, we have found optimal parameter sets as
we presented in [BCJ11]. The expected number of collisions between the second and first
level, C2, does dominate the time and is minimal for the above parameters. A closer look at
the individual cost reveals that the space requirement is dominated by the lists at the third
level. A fourth application of the representation technique can reduce the size of these lists.
An alternative is to allow larger moduli in the levels which reduces the number of expected
collisions. We present optimal parameters for both ideas in the following.

Minimize running time for four-levels

We assume that `/n ≈ 0.5. The minimal running time T4level-x(α, β, γ, δ) for a four level
algorithm occurs for parameters

α = 0.0257, β = 0.0162, γ = 0.0028, δ = 3.974E − 04 .

2Octave 3.2.4, function nelder_mead_min, http://www.octave.org
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The minimal running time remains as before of order Õ
(
20.291n

)
given by C2. The needed

space drops to L(3) = Õ
(
20.289n

)
. The different terms that contribute to the expected

complexity are:

B4l ≈ 20.159n, L(4) ≈ 20.210n, L(3) ≈ 20.289n,

L(2) ≈ 20.279n, L(1) ≈ 20.219n, M4 ≈ 20.107n,

M3 ≈ 20.130n, M2 ≈ 20.286n, M1 ≈ 20.268n,

C4 ≈ 20.291n, C3 ≈ 20.291n, C2 ≈ 20.291n

C1 ≈ 20.229n .

(5.13)

As γ and δ are quite small, we can also compute the expected complexity by setting them to
zero. We obtain a minimal running time Õ

(
20.295n

)
with space requirement Õ

(
20.292n

)
for

α = 0.0236, β = 0.284, γ = 0, δ = 0 .

The individual cost are:

B4l ≈ 20.136n, L(4) ≈ 20.189n, L(3) ≈ 20.292n, L(2) ≈ 20.284n,

L(1) ≈ 20.236n, M4 ≈ 20.083n, M3 ≈ 20.0833n, M2 ≈ 20.290n,

M1 ≈ 20.273n, C4 ≈ 20.295n, C3 ≈ 20.295n, C2 ≈ 20.295n

C1 ≈ 20.201n .

The memory needs can not further be reduced if we keep the moduli of size of the number of
decompositions.

5.2. Improvement on the memory requirement

Let `/n ≈ 0.5. The optimal setting for three levels, presented in section 5.1.1, shows that
the memory requirement varies at the different levels and is high at levels two and three. We
can augment the moduli as we proposed in section 4.2.2 to reduce the memory without an
increase in the overall time. Per level i where we wish to reduce the size of the lists, we apply
an additional modular constraint w.r.t. an integer mi. We choose mi co-prime to the previous
moduli and change the target at each iteration until all values in Z/miZ were chosen.
We will have a closer look at the subtask to create the elements at the first and second level

that are obtained by joining the large lists of the levels below.
In order to find L(1) elements for each list in the first level, we will create them in blocks

of expected size L′(1) = L(1)/Λ for a real parameter Λ ≥ 1. Our goal is of course to reduce
the memory requirement needed to create all L(1) elements. Heuristically, we assume that the
elements in the lists that we collide are random values. If we increase the modular constrains
M3M2 of the second level by a factor Λ, such that the modulus becomesm2M3M2 ≈ Λ·N3, we
expect to observe C2/Λ collisions between lists of size L′(2) = L(2)/Λ. The expected number
of elements for the first level within the C2/Λ colliding elements is L′(1) as we required. If we
repeat the steps Λ times for all possible targets in Zm2 , we create altogether Λ · L′(1) = L(1)

elements per list.
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Chapter 5. Extended-representation-technique algorithm

We will now specify constraints on the parameter Λ. The minimal memory requirement is
given by the size of the bottom lists B3l. If we increase the moduli, we can hope to decrease
the lists to about the same size at best. Let Ti be the time needed by the lower levels to
create lists at level i. We need to ensure that the time T1 to create all L(1) elements per list
at level two stays unchanged. We can write T1 = max(L(1), C1, T2) where

T2 = Λ ·max(C2
Λ ,

L(2)

Λ , T3)

The used memory is so far given by B3l, L
(1), L′(2) and L(3) which is dominated by the lists

at the third level.

We can apply the same idea to create all L(2) elements in blocks of expected size L′(2) =

L(2)/∆ for real ∆ ≥ 1. We increase the modular constraints in the third level by the factor ∆

to m3M3 ≈ ∆ · N3 thus reducing the lists to L′(3) = L(3)/∆ elements per run. The number
of colliding elements in a merge-join is reduced by the same factor. After ∆ repetitions, we
have created ∆ · L′(2) = L(2) elements per list in level two. The time can be estimated as

T3 = ∆ ·max(B3l,
C3
∆ , L

(3)

∆ ) .

As we would like to keep the overall running time at T3levels-x, we require that

T1 = max(C1, L
(1), L(2), C2,Λ · L(3),Λ · C3,∆ · ΛB3l)

equals
T3levels-x = Õ (C3) .

For Λ > 1, the time would increase such that we leave the constraints at the second level at
size N2. It rests to ensure that the time to read the bottom lists, ∆ · B3l, stays in the limit
given by C3. The number of collisions at the third level, C3, is of expected size B2

3l
N3

. From
the condition B3l ≤ C3, we derive that M3 ≈ ∆ · N3 ≤ B3l. Setting M3 ≈ B3l, leaves the
maximal size of list as:

max(B3l ≈ L(3), L(1), L(2)) = L(2) = Õ
(
20.279n

)
.

For slightly increased modulo m3M3 = O
(
20.266n

)
and about ∆ = O

(
20.025n

)
additional

repetitions in the third level, we obtain an algorithm of running time T3levels-x = Õ
(
20.291n

)
and memoryM3levels-x/∆ = Õ

(
20.279n

)
.

Larger modular constraint for a four-level algorithm. We care to reduce the memory at
level three. By the same reasoning than above, we construct elements of level two in blocks
of size L(2)/Λ. To this end, we choose a modulo m3M3 ≈ λN3 under the condition that the
cost to create all L(2) elements,

T2 = max(T3, L
(2), C2) ,
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in the second levels does not increase the overall running time T4levels-x = Õ (C4). The term
T3 denotes the time to create the lists in the third level. More precisely, we require that

max(T3, C2) ≈ C4

where
T3 = Λ ·max(T4,

L(3)

Λ , C3
Λ ) = max(Λ · T4, L

(3), C3)

and
Λ · T4 = max(Λ ·B4l,Λ · L(4),Λ · C4) = Λ · C4 .

Observe that we have an increase in the running time for Λ > 1 due to term Λ · C4. We
conclude that the memory can not be decreased in this way.

5.3. Implementation and experimental evidence

In order to verify the correctness and practicability of the techniques and heuristics presented
in the previous section, we have implemented a three-level extended-representation-technique
algorithm. We ran our implementation on 50 random knapsacks containing 80 elements on
80 bits. The target sum was constructed in each case as a sum of 40 knapsack elements.
For each of these knapsacks, we ran our implementation several times, choosing new random
modular constraints for each execution, until a solution was found. As shown in figure 5.4,
we constructed the solution vector by vectors containing two -1s at the first, one -1 at the
second and none at the third level. We also collected statistical information such as the real
size of intermediate lists and the number of collisions.

(n′′′1 , n
′′′
−1, n

′′′
0 ) = (6, 1, 73)

|L(3)
j | ≤ 12 056 576

(n′′1, n
′′
−1, n

′′
0) = (12, 2, 66)

|L(2)
j | ≤ 20 224 325

(n′1, n
′
−1, n

′
0 = (22, 2, 56)

|L(1)
j | ≤ 268 964

Solution of the 80-bit knapsack
(containing 40 1s and 40 0s)

Figure 5.4.: Decomposition of a single solution for an equibalanced knapsack of size 80. The decom-
position into 0s,1, and -1s is the same within each level.
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The total running time to solve the 50 knapsacks was 14 hours and 50 minutes on a Intel R©
CoreTM i7 CPU M 620 at 2.67GHz. The total number of repetitions of the algorithm for the
complete test case was equal to 280. We observed that a maximum of 16 repetitions (choice of
a different random value in level one) was sufficient to find the solution. Also, 53% of the 50
random knapsacks needed only up to 4 repetitions. On average, each knapsack required 5.6
repetitions. The complete distribution of the number of repetitions is presented in table 5.1.

Table 5.1.: Number of repetitions for 50 random knapsacks until a solution was found.

Number of Number of Number of Number of
repetitions corresponding knapsacks repetitions corresponding knapsacks

1 8 2 6
3 9 4 4
5 2 6 5
7 1 8 1
9 1 10 5
11 4 12 1
13 0 14 1
15 0 16 2

The moduli were chosen as primes of size as discussed in section 5.1: M3 = 1 847, M2 =

2 353 689, and M1 = 17 394 593. The experimental and theoretical sizes of the lists and the
number of collisions are given in table 5.2.

Table 5.2.: Experimental versus estimated sizes of the intermediate lists and number of collisions.

List type Min. size Max. size Theoretical estimate

|L(3)
j | 12 024 816 12 056 576 L(3) =

( 80
6,1,73)
1 847 ≈ 12 039 532

C3 61 487 864 61 725 556 (L(3))2

2 352 689 ≈ 61 610 489

|L(2)
j | 12 473 460 20 224 325 L(2) =

( 80
12,2,66)

1 847·2 352 689 ≈ 31 583 129

C2 14 409 247 23 453 644 (L(2))2

17 394 593 ≈ 57 345 064

|L(1)
j | 183 447 268 964 L(1) =

( 80
22,2,56)

1 847·2 352 689·17 394 593 ≈ 592 402

C1 178 1 090 L2
ν ·1 847·2 352 689·17 394 593

280
≈ 21 942

The number of elements that were created in level i are |L(i)
j | and Ci denoting the stored

elements and the number of collisions, respectively. The value for |L(i)
j | is the mean between
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all lists of the same level. If we compare the estimated and actual number of elements for the
third level, we see that |L(3)

j | and C3 are very close to the predicted values and do not vary a

lot within the different trials. The estimation for |L(2)
j | and |L

(1)
j | ignores the loss of solutions

which are incompatible to the modular constraints of the lower levels. The actual sizes of the
lists is therefore smaller than the predicted one. The effect is forwarded from level two to
level one resulting in an even bigger gap between theory and practice for |L(1)

j | and C1. The
variable C1 counts joined elements that have to be tested for a correct weight and equality
to the target value over the integers. We recall that our theoretical estimate upper bounds
the size as it counts collisions modulo M3 ·M2 ·M1, a number close to 280, and neglects the
conditions of the lower levels.

Experimental confirmation of the assumption of independence.

We also performed additional tests on 240 random knapsacks where we repeated the search
for a solution 10 times per knapsack. Figure 5.5 shows the distribution of necessary repeti-
tions until the solution was found. We observe an average of µ = 5.47 and a minimum of
41 repetitions. In 95% of the cases less than 16 repetitions were enough to find the solution.
Furthermore, the results seem to be conform with a random variable following the geometric
distribution of expected value µ where we assume independence for each decomposition and
level and the same probability of success 1/µ. Figure 5.5 also depicts the probability distri-
bution of the random variable. None of the tested random knapsacks was distinctly easier or
more difficult to solve than the others within the 10 runs.
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Figure 5.5.: Percentage of 240 random knapsacks, each run 10 times, per number of repetitions
(red bar); Random variable of geometric distribution in values x, probabilities px = 100 · exp((x− 1) ·
log(1− 1/µ)), where µ is the average number of repetitions (green - -) 73
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The sizes of the intermediate lists |L(3)
j |, |L

(2)
j | and |L

(1)
j | are given in table 5.3 and compared

to the estimate. We present the minimal and maximal sizes as well as the mean and the sample
standard deviation for each of the lists. The average running time per found solution is 3.05
minutes per repetition and 17.53 minutes to find the solution on an Intel R© XeonTM CPU
X5560 at 2.80GHz.

Table 5.3.: Experimental sizes of the intermediate lists for 240 random knapsacks.

List type Min. size Max. size Mean Sample
standard
deviation

Theoretical
estimate

|L(3)
j | 12 009 444 12 068 959 12 039 526 3 391 12 039 532

|L(2)
j | 12 231 570 20 233 425 19 924 351 202 256 31 583 129

|L(1)
j | 177 662 269 786 263 337 3 437 592 402

Experimental behavior of decompositions.

It is useful to determine the probability of success of each decomposition. Three levels of
decomposition occur. At the top level, a balanced golden solution with 40 zeros and 40 ones
needs to be split into two partial solutions with 22 ones and two -1s each. At the middle level,
a golden solution with 22 ones and two -1s is to be split into two partial solutions with 12
ones and two -1s. Finally, at the bottom level, we split 12 ones and two -1s into twice 6 ones
and one -1.
At the top level, the number of possible decompositions of a golden solution is larger than(

40
22

)(
40

2,2,36

)
≈ 256. As a consequence, it is not possible to perform experimental statistics of

the modular values of such a large set. At the middle level, the number of decompositions
is larger than

(
22
11

)(
2
1

)(
46

1,1,44

)
≈ 232. Thus, it is possible to perform some experiments, but

doing a large number of tests to perform a statistical analysis of the modular values is very
cumbersome. At the bottom level, the number of decompositions of a golden solution is(

12
6

)(
2
1

)
= 1848. This is small enough to perform significant statistics and, in particular, to

study the fraction of modular values which are not obtained (depending on a random choice
of 14 knapsack elements, 12 1s and two −1s, to be split). The value of the modulus used in
this experiment is 1847, the closest prime to 1848.
During our experimental study, we created one million modular subknapsacks from 14 ran-

domly selected values modulo 1847. Among these values 12 elements correspond to additions
and 2 to subtractions. From this set we computed ( in Z1847) all of the 1848 values that can be
obtained by summing 6 out of the 12 addition elements and subtracting one of the subtraction
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elements. In each experiment, we counted the number of values which were not obtained; the
results are presented in figure 5.6. On the vertical axis we display the cumulative number
of knapsacks which result in x or less skipped values. To allow comparison with the purely
random model, we display the same curve computed for one million of experiments where 1848
random numbers modulo 1847 are chosen. In particular, we see on this graph that for 99.99%

of the random knapsacks we have constructed the fraction of unobtained value stays below
2/3. This means that experimentally, the probability of success of a decomposition at the
bottom level is, at least, 1/3 for a very large fraction of knapsacks. Assuming independence
between the probability of success of the seven splits and a similar behavior of three levels3,
we conclude that for 99.93% of random knapsacks an average number of 37 = 2187 repetitions
suffices to solve the initial problem.
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Figure 5.6.: The horizontal axis represents all values M ∈ Z1847. The vertical axis counts at a
position p the cumulative number of knapsacks a (in a million) for which at most p values in Z1847

can not be obtained as a · x mod 1847 where wt(x) = (1s,−1s) = (12, 6).

3The limited number of experiments we have performed for the middle level seem to indicate a comparable
behavior. We performed 100 experiments and the number of not obtained values remained in the range
42% – 43.1%.
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Some Results with n = 96.

We also tested the algorithm on equibalanced 96-bit knapsacks. However, it was not possible
to add the optimal number of -1s, because some of the lists required too much memory.
Instead, we used the following suboptimal choices:

• Split the initial knapsack into two subknapsack with 25 ones and one -1.

• Split again into subknapsacks with 14 ones and two -1s.

• Finally split into subknapsacks with 7 ones and one -1.

The chosen moduli are M3 = 6 863, M2 = 248 868 793 and M1 = 42 589. We tried 5 different
knapsacks and solved all of them with an average number of repetitions equal to 7.8. The
runtime for a single trial is 47 minutes on a Intel R© XeonTM CPU X5560 at 2.80GHz using
13 Gbytes of memory4.
We can also compare the implementation to the practical implementation by Joux of the

Howgrave-Graham–Joux algorithm. This variant takes an average of 15 minutes to solve
a knapsack on 96 bits, using 1.6 Gbytes of memory. However, the program is much more
optimized. Moreover, it contains heuristics to reuse the computations of intermediate lists
many times, in order to run faster. The new algorithm can probably take practical profit of
similar tricks. As a consequence, the running time on 96 bits are not so far from each other.
We expect the cross-over point to occur around n = 128, which means that 96 bits is close to
the cross-over point between the two algorithms.

5.4. Upper bounds on the size of the lists and number of
collisions

Concerning the size of the lists that occur during the algorithm, both the simple heuristic
model in section 5.1 and the experimental results presented in section 5.3 use the fact that
the size of the lists are always very close to the theoretical average-case values. It remains to
give an upper bound on the size of the various lists and number of collisions for knapsacks
that lead to larger values.

Upper bound on the size of the lists. For the lists L(i)
j , we can use a direct application

of theorem 4.1. The set B is the set of all vectors of length n with coefficients in {1, 0,−1}
fulfilling the weight conditions of level i. The modulus M is the product of all active moduli
at the current and preceding levels. That is, for level three we have M = M3, for level two,
M = M3 ·M2 and for level one we take M = M3 ·M2 ·M1. We compute the number of
knapsacks Hλ which produce an overflow of some lists for certain targets which means that

4We would like to thank CEA/DAM (Commissariat à l’énergie atomique, Direction des applications mili-
taires) for kindly providing the necessary computing time on its servers.
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considerably more than |B|/M vectors are found. Let λ be an integer and consider the number
Hλ of knapsacks for which more thanM/(2λ) values R ∈ ZM have a probability that satisfies:

Pa1,··· ,an(B, R) ≥ λ/M .

Due to theorem 4.1 and the above assumptions, we find that

M − 1

M |B|
Mn ≥ Hλ

∑
R∈ZM

(
Pa1,··· ,an(B, R)− 1

M

)2

≥ Hλ ·
M

2λ
· (λ− 1)2

M2
.

As a consequence, we can derive the upper bound:

Hλ ≤
2λ

(λ− 1)2
· M
|B|
· M − 1

M
·Mn ≤ 2λ

(λ− 1)2
·Mn .

We can conclude that for a knapsack which is not one of the Hλ knapsacks above and for most
targets (all but at most M/(2λ)), the size of the lists L(i)

j is at most λ times the expected
value |B|/M :

L(i) ≤ λ |B|
M

.

Upper bound on number of collisions. To bound the number of collisions Ci, we proceed
slightly differently. The set B consists of vectors that are joined and checked for consistency
to the current constraint w.r.t. a modulus M . We decompose M : M = M1 ·M2 where M1

is the product of the moduli of the lower levels. All vectors that are to be collided fulfil a
constraint modulo M1. We add a constraint modulo M2 for the join. Let σ (mod M) denote
the target for collision. Let σL (mod M1) and σR (mod M1) denote the values of the sums
in the left and right lists, respectively. By construction, we have σL+σR ≡ σ (mod M1). We
can write:

Ci =
∑

c ∈ ZM
c ≡ σ (mod M1)

(|B| · Pa1,··· ,an(B, c)) · (|B| · Pa1,··· ,an(B, σ − c))

≤


∑

c ∈ ZM
c ≡ σL

(|B| · Pa1,··· ,an(B, c))2 ×
∑

c ∈ ZM
c ≡ σR

(|B| · Pa1,··· ,an(B, c))2



1/2

. (5.14)

Thus to estimate the number of collisions, we need to find an upper bound for the value of
sums of the form: ∑

c ∈ ZM
c ≡ c1 (mod M1)

Pa1,··· ,an(B, c)2 .
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To do this, it is useful to rewrite the relation from Theorem 4.1 as

1

Mn

∑
(a1,··· ,an)∈ZnM

∑
c∈ZM

Pa1,··· ,an(B, c)2 =
M + |B| − 1

M |B|
.

Given λ, we let Gλ denote the number of knapsacks for which more than M1/(8λ) values c1

have a sum of squared probabilities that satisfy:

∑
c ∈ ZM

c ≡ c1 (mod M1)

Pa1,··· ,an(B, c)2 ≥ λ2

M2
1M2

.

We find that
Gλ
Mn
· M1

8λ
· λ2

M2
1M2

≤ M + |B| − 1

M |B|
;

and as a consequence

Gλ ≤
8

λ
· M + |B|
|B|

·Mn .

Moreover, we can check with our concrete algorithm that we always have |B| ≥ M for the
join. Thus we have

Gλ ≤ (16/λ)Mn .

For a knapsack which is not one of the Gλ knapsacks above and for most values (all but
at most 2M1/(8λ)) of σL mod M1, the number of collisions Ci is smaller than λ2 times the
expected value |B|2/(M2

1 M2):

Ci ≤
λ2 |B|2

M2
1 ·M2

.

5.5. Analysis of the probability of success

The proposed three-level algorithm of section 5.1 searches the unique golden solution to a
knapsack problem by decomposing it seven times. Each of the decompositions is considered
successful if the golden solution admits at least one representation which satisfies the modular
constraint per level. Suppose that at least one representation of the solution satisfies the
modular constraints at the first level. We then need to represent each of the partial solutions
which means that at least one of their representations needs to satisfy the modular constraint
at the next lower level etc. Clearly, if each of the seven decompositions succeeds, the initial
solution can be found by the algorithm.
Heuristically, we can assume that the modular sum a · x mod M are random values dis-

tributed uniformly in ZM as discussed in section 4.1. Assuming independence between the
different decompositions, we can lower bound the overall probability by the product of the
probability of success of the individual decompositions. It can be larger if multiple represen-
tations satisfy the constraints. The assumption of independence is a heuristic one based on
experiments performed on random modular knapsacks such as presented in section 5.3. The
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modular sums are clearly dependant as they are all subsums of the same set of elements. One
can also construct examples for which the assumption clearly does not hold. A set of integers
ai mod M , for i−1, ..., n, that contains only even elements or that are all zero clearly does not
lead to equally distributed values a ·x mod M in ZM and the elements in the lists will clearly
share strong characteristics. If we do not assume independence, we can still obtain a weak
upper bound of the probability of failure which is smaller than the individual probabilities of
failure.
We follow the heuristic model and assume independence due to the results of section 4.1

which shows that the values a · x mod M behave well for almost all modular knapsacks
a = (a1, .., an) ∈ ZnM . Depending on a fixed integer parameter λ > 0, we ask that at least
M/λ values in ZM are attained. The number of knapsacks F (λ) which do not comply to this
condition can then be upper bounded:

F (λ) ≤ M − 1

(λ− 1)|B|
·Mn ≤ 1

λ− 1
Mn

for M ≤ |B|.
Our algorithm will fail to find the solution or have a substantial increase in its complexity

if the modular subsums are cumulated on few values. In this case we may fail to pick the
corresponding target or we experience a considerable increase in the number of collisions and
elements to be stored. In the first case, the solution is not found. If we detect an increase
in the number of produced elements, we can stop and change the target. We hence redefine
our notion of a bad knapsack as one that has subsums that are far from uniform such that
no representation fulfils the modular constraints or for which the number of collisions or the
lists are too large in the sense of section 5.4. We find that the total fraction of bad knapsacks
for the seven decompositions is smaller than

7

(
1

λ− 1
+

2λ

(λ− 1)2
+

16

λ

)
≤ 140

λ
for λ ≥ 7 .

By choosing a large enough value for λ, this fraction can become arbitrarily small.
For a good knapsack, we can bound the proportion of random target values which do not

lead to a solution, Vλ, due at least one of the three reasons above. We remind that at most
1 − 1/λ values are not attained, at most 1/(2 · λ) values let the lists overflow and at most
2/(8 · λ) values lead to too many collisions. The proportion of random target values that are
not in our favour as they let a decomposition fail is thus smaller than

λ− 1

λ
+

1

2λ
+

2

8λ
= 1− 1

4λ
.

By repeating each decomposition 8λ times on average with changed target chosen randomly
and independently, we make sure that the probability of failure of one decomposition, Pfail,
is at most (

1− 1

4λ

)8λ

≈ e−2 ≈ 0.135 .
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The running time is multiplied by (8λ)7 while the memory requirement stays as before. We
assume here that we create (8λ)7 target tuples for which we run the algorithm. Assuming
independence between the seven decompositions leads to a global probability of success of
1 − 7 · Pfail ≈ 5%, which becomes exponentially close to 1 by repeating polynomially many
times.
Given a real ε > 0, we set λ = 2ε n and can generalize the above result:

Theorem 5.1
For any real ε > 0 and for a fraction of at least 1− 140 · 2−ε n of equibalanced knapsacks with
density D < 1 given by an n-tuple (a1, · · · , an) and a target value S, if ε = (ε1, · · · , εn) is a
solution of the knapsack then the algorithm described in section 5.3 modified as above finds
the solution and runs in time Õ

(
2(0.291+7ε)n

)
.

We recall that in the theorem, the term equibalancedmeans that the solution ε contains exactly
the same number of 0s and 1s.
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Constant-memory algorithms

The knapsack problem can also be solved using a negligible amount of memory by use of
a constant-memory-cycle-finding algorithm [BCJ11]. For simplicity we assume that n is a
multiple of 4 and that the Hamming weight, the number of non-zero coordinates, of the
knapsack solution x is exactly n/2.

6.1. Classical decomposition

We redefine the problem as a collision search problem [vOW96] as follows: Let f1, f2 :

{0, 1}n/2 → {0, 1}n/2 be two functions defined as

f1(y) =

n/2∑
i=1

aiyi mod 2n/2 and f2(z) = S −
n∑

i=n/2+1

aizi mod 2n/2

where yi denotes the i-th bit of y ∈ {0, 1}n/2, and similarly for zi. If we can find x,y such
that f1(y) = f2(z), then we get:

n/2∑
i=1

aiyi +
n∑

i=n/2+1

aizi = S mod 2n/2

which we have to verify over the integers. Heuristically, there are 2n/2 such tuples (y, z)

and only a single one that fulfils the equation over Z (for a hard knapsack). This means
that whenever we find y and z such that f1(y) = f2(z), we have found the correct knapsack
solution with probability roughly 2−

n
2 .

From the two functions f1, f2 we define the function f : {0, 1}n/2 → {0, 1}n/2 where:

f(y) =

{
f1(y) if g(y) = 0

f2(y) if g(y) = 1

where g : {0, 1}n/2 → {0, 1} is a function that outputs 0 or 1 on input y with probability
1/2. Then a collision of f , i.e., when f(y) = f(z), gives a desired collision f1(y) = f2(z) or
f2(y) = f1(z) with probability 1/2. The two cases where y and z are evaluated with the same
function do not give a solution to the original problem.
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The function f : {0, 1}n/2 → {0, 1}n/2 is a random function, therefore using Floyd’s cycle
finding algorithm [Knu81] we can find a collision for f in time 2n/4 and constant memory. We
may fail to find the solution with probability 2−

n
2 even if we have found a collision over 2

n
2 .

We can expect to find the solution by repeating Floyd’s algorithm on a different sequence of
y’s about 2

n
2 times. For each new start, we can apply a random permutation on the elements

in the knapsack or change the sequence of y’s. In the latter case, we also need to randomize g
by choosing a random element r ∈ {0, 1}

n
2 and evaluation g on r⊕y. This gives an algorithm

with total running time Õ
(
23n/4

)
and constant memory.

Bisson and Sutherland presented a similar idea [BS12] to solve a generalized subset-sum
problem in a generic finite group by use of Pollard’s Rho algorithm. Their technique applies
to cases of large density in which case many solutions may exist.

6.2. Decomposition inspired by representation technique

We now show how to slightly decrease the running time down to Õ
(
20.72n

)
, still with constant

memory by use of the representation technique.
We let Bnn/4 be the set of n-bit strings of Hamming weight n/4. We have |Bnn/4| =

(
n
n/4

)
≈

2nh(1/4) ≈ 20.81n. We define the two functions f1, f2 : Bnn/4 → {0, 1}
h(1/4)n:

f1(y) =

n∑
i=1

aiyi mod 2h(1/4)n, f2(z) = S −
n∑
i=1

aizi mod 2h(1/4)n

where yi denotes the i-th bit of y, and similarly for zi. In a first step, we search for y, z ∈ Bnn/4
such that:

f1(y) = f2(z) (6.1)

which is equivalent to:

n∑
i=1

aiyi +

n∑
i=1

aizi = S mod 2h(1/4)n .

Since f1 and f2 are random functions, there are heuristically about 2h(1/4)n solutions to
(6.1). For a correct solution x there are

(n/2
n/4

)
' 2n/2 representations meaning that there are

about 2n/2 ways of writing
n∑
i=1

aiyi +
n∑
i=1

aizi = S

where x = y + z for y, z ∈ Bnn/4. All these 2n/2 solutions are solutions of (6.1). Therefore the
probability P that a random solution of (6.1) leads to the correct knapsack solution is

P =
2n/2

2h(1/4)n
≈ 2−0.31n .
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The input space of f1, f2 has size 2h(1/4)n. Therefore using the same cycle-finding algorithm
as in the previous section, a random solution of (6.1) can be found in time Õ

(
2h(1/4)n/2

)
. The

total time complexity is therefore:

Õ
(

2h(1/4)n/2
)
· P−1 = Õ

(
2h(1/4)n/2

)
· 2(h(1/4)−1/2)n

= Õ
(

2(3h(1/4)/2−1/2)n
)

= Õ
(
20.72n

)
.

Finally, we note that it is possible to further improve this complexity by adding −1s in the
decomposition (as in chapter 5) but the time complexity improvement is almost negligible.
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Chapter 7

Summary – Comparison of complexity

The previous chapters presented generic algorithms that solve the subset-sum problem (defini-
tion 2.2) of density close to one in exponential time and memory. The most efficient classical
algorithm, proposed by Shamir and Schroeppel (section 3.1), solves all instances in time
Õ
(

2
n
2

)
using space Õ

(
2
n
4

)
given a knapsack of n elements. The algorithms splits the set

of knapsack elements into four disjoint sets and enumerates all possible subsums within the
small sets. The solution vector is in this way constructed by concatenation of four vectors.
One can trade memory against time (section 3.3) and obtain an algorithm of slightly increased
running time Õ

(
2(13/16−ε)n) using less memory: Õ

(
2(1/16+ε)n

)
for real ε, 0 ≤ ε ≤ 3/16.

An alternative represents the algorithm by Howgrave-Graham and Joux (section 4.2). The
solution is recovered from a sum of four vectors of same length than the solution vector and
of weight one forth each. As this decomposition is non unique one obtains degrees of freedom.
To reduce the cost in return, the authors propose modular constraints that render the search
probabilistic. The original algorithm needs Õ

(
20.337n

)
time and Õ

(
20.311n

)
space on average.

An exponentially small fraction of knapsacks can not be solved in this way. The algorithm
performs well in practice and that the complexity is close to the expected one. We show
(section 4.2.2) that the memory requirement can be reduced to Õ

(
20.272n

)
at the cost of

repetitions by increasing the modular constraints. The overall asymptotic running time stays
unchanged.
Permitting a slightly larger weight for the vectors that build the solution as a sum, one can

improve the running time (section 5). The average running time and memory requirement
becomes Õ

(
20.291n

)
. Admitting larger modular constraints, the memory can be reduced to

Õ
(
20.279n

)
while the asymptotic running time remains unaffected. The algorithm may fail to

find the solution for some knapsack problems for which the assumptions of average subsums
do not hold. The proportion is exponentially small. Experiments show that the algorithm
behaves well in practice.
The largest running time using a constant amount of memory can be achieved by use of a

cycle finding algorithm (section 6). The time is 2
3
4
n and can be reduced to 20.72n using the

ideas by Howgrave-Graham and Joux. Table 7.1 summarizes the results.
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Table 7.1.: Asymptotic time and memory to solve the subset-sum problem for a random instance of
density one and size n where the solution vector has Hamming weight ≈ n

2 .

Algorithm Time Memory Section

Simple birthday paradox 2
n
2 2

n
2 3

Shamir-Schroeppel 2
n
2 2

n
4 3.1

Shamir-Schroeppel trade-off (ε ≤ 3/16) 2(11/16−ε)n 2(1/16+ε)n 3.3

Simple representation technique 20.337n 20.311n 4.2.1

Simple representation technique (larger
moduli)

20.337n 20.272n 4.2.2

Extended representation technique 20.291n 20.291n 5.1

Extended representation technique
(larger moduli)

20.291n 20.279n 5.2

Cycle finding 2
3
4
n constant 6

Cycle finding (representation tech-
nique)

20.72n constant 6.2
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Part III

Improving information-set
decoding





Chapter 8

Error-correcting codes in
cryptography

Error-correcting codes aim at improving the reliability of a communication over a noisy chan-
nel by detection and correction of errors that occur during the transmission. In order to
enable a recovery of the original message, the sender adds redundancy during the encoding
process and obtains a codeword. The codeword is then sent over the unreliable channel and
the receiver checks for consistency. If errors occurred, the receiver corrects and decodes the
received information to obtain the message. The coding and decoding process is usually pre-
sented as in figure 8.1. Error-correcting codes are furthermore used to correct stored data,

−→
message

x

encoder −→
encoded
message

c

noisy
channel

−→ · · ·
received faulty

vector
y = c + e

· · · −→
received faulty

vector
y

corrector −→
encoded
message

c

decoder −→
message

x

Figure 8.1.: Encoding and decoding of a message sent over a noisy channel.

e.g. on hard drives, CDs or DVDs. Chapter 8.2 introduces cryptography based on linear error
correcting codes.
A simple method to detect errors in the received message is to encode the message as a

binary vector and to add a parity bit. Such a code can detect an odd number of errors in the
transmitted codeword. However, it is limited in its usage as it can not detect an even number
of changes to the bits of the codeword and can not specify the positions in which errors have
occurred. A simple repetition of the message can detect which positions where changed if the
errors have not occurred on the exact same positions of the codeword and its repetition. This
method has the drawback of long codewords.
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Chapter 8. Error-correcting codes in cryptography

We will now formalize the description of a family of codes introducing linear codes that are
used to build cryptographic systems.

8.1. Linear error correcting codes

The codewords of a linear code are obtained by applying a linear map to the messages or
information vector which are represented as vectors of length k over the field Fq. The linear
code C is the set of all codeword vectors of length n, n > k, over Fq that are images of the
message under the linear map; it is thus a vectorial subspace of Fnq of dimension k and is
generated by k linearly independent vectors in Fnq which form the rows of a matrix G. The
codewords are obtained as linear combinations of these basis vectors and coefficients in the
underlying field Fq.

Definition 8.1 (Linear Code)
Given a matrix k × n matrix G over Fq of rank k. The linear code C is defined as the set
C := {c = xG : x ∈ Fkq}; it has length n and dimension k. The matrix G is called a generator
matrix of the code.

We can alternatively define a linear code by use of the its dual code.

Definition 8.2 (Dual Code)
The dual code C⊥ of a code C, is the set of all vectors that are orthogonal to the codewords
of C.

We can write the generator matrix in systematic form G = [Ik|A] where Ik is the identity
matrix of dimension k and A is a k×(n−k) matrix. Given a code C with systematic generator
matrix G, the generator matrix H of C⊥ equals [−AT |In−k] in systematic form. The matrix
H provides a parity check for C as it shows how certain linear combinations of the digits of
a codeword sum up to zero; it is therefore called the parity check matrix.
The code C can then also be defined as the kernel of the map defined by matrix H, i.e.,

C =
{
c ∈ Fnq : HcT = 0

}
.

The generator matrix and the parity check matrix of a code are not unique. The matrices are
unique up to multiplication by a regular k × k matrix over Fq.
We can also imagine to apply the same coordinate permutation on all codewords or a

permutation on the symbols of the alphabet Q in which we express the messages. We derive
an equivalent code of same length, dimension and minimum distance. We consider that
Q = Fq and equivalent codes can be obtained as follows.

Definition 8.3 (Equivalent code)
We call two codes equivalent if the generator matrices can be transformed into one another by
permutations or scaling of rows or columns, or by addition of rows.

Note that Gaussian elimination applies only these operations and can be used to bring G and
H into systematic form or to check for equivalence.
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8.1. Linear error correcting codes

The generator matrix of a code G is a k × n matrix over Fq of rank k which implies that the
linear map Fkq → Fnq , x 7→ xG is injective. A message is uniquely encoded to a codeword.
In case of a systematic generator matrix, a message x is uniquely encoded to the codeword
c = xG such that the first k entries of c equal the message. The corresponding coordinates
are called information symbols. The last n − k coordinates are the parity-check symbols and
provide redundancy. Figure 8.2 shows the encoding by use of a systematic generator matrix.

message
(x1, . . . , xk)

−→ (x1, . . . , xk)×

 1 0
. . . A

0 1


encoding

−→ encoded message
(x1, . . . , xk|ck+1, · · · , cn)

· · · encoded message
(x1, . . . , xk|ck+1, · · · , cn)

−→

(x1, . . . , xk|ck+1, · · · , cn)
⊕

(e1, . . . , en)
noisy channel

−→ received vector
(y1, . . . , yn)

Figure 8.2.: Encoding and transmission of a message by a linear code with systematic generator
matrix.

This leads to the the notion of an information-set.

Definition 8.4 (Information set)
Given a generator matrix G for a linear code. The information set I ⊂ {1, .., n} indexes k
columns of G such that they form an invertible k×k submatrix of G. The columns {1, .., n}\I
of a parity check matrix H of the code form an n− k × n− k invertible submatrix of H.

We can also set the length of a message in relation to the length of a codeword and express
in this way the amount of information that a symbol in a codeword contains.

Definition 8.5 (Information rate)
The information rate R, the ratio between the length k of a message and the length n of a
codeword, R := k/n.

To further characterize a code, we need the notion of a distance over Fnq . A widely used
distance is the Hamming distance.

Definition 8.6 (Hamming distance, Hamming weight)
The Hamming distance between two vectors x = (x1, .., xn), y = (y1, ..yn) ∈ Fnq is the number
of coordinates in which x and y differ. It is defined as the non-negative integer

d(x, y) := |{1 ≤ i ≤ n : xi 6= yi}| .
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Chapter 8. Error-correcting codes in cryptography

We denote by wt(x) the Hamming weight of x which is defined as

wt(x) := d(x, 0) ;

It denotes the number of non-zero positions of x.

An important characteristic of a code C is the minimal distance between two different code-
words which is defined by use of the Hamming distance.

Definition 8.7 (Minimum distance)
The minimum distance d between two codewords is the minimum number of different coordi-
nates of two codewords,

d := min {d(x, y) : x, y ∈ C, x 6= y} .

In the case of a linear code, the difference of two codewords is also in the code, which means
that d is equal to the length of the shortest codeword, i.e,

d = min {wt(c) : c ∈ C \ {0}} .

Note that for linear codes, the minimum distance is defined by the shortest codeword and it
therefore requires only |C| − 1 operations to find it. In the general case one would have to
compute the difference of all tuples of codewords, which are

(|C|
2

)
many.

We denote a binary linear code C of length n, dimension k and minimum distance d as an
[n, k, d]-code.

A code is furthermore specified by

• the error-detection capability , the maximal number of coordinates of an erroneous code-
word that can be detected and

• the error-correction capability t, the maximal number of coordinates of an erroneous
codeword that can be corrected.

We will see that both properties depend on the minimum distance of the code.
An encoder and a decoder for an [n, k, d]-codecan be described formally as follows.

Definition 8.8 (Encoder, Decoder)
Let G be the generator matrix of a code C. An encoder is an injective map Enc : Fkq → C ⊆
Fnq , x 7→ xG. A decoder is a map Dec : Fnq → Fkq that maps c ∈ C to x.

A decoder that always outputs the closest codeword c to a received vector y ∈ F2
q (w.r.t.

the Hamming distance) is called a maximum-likelihood decoder . Note that a maximum-
likelihood decoder does not ensure a decoding of a received vector to the correct codeword. If
a maximum-likelihood decoder rejects the encoding in case of an error that exceeds a bound
such as t = (d− 1)/2, we call it a bounded-distance decoder .
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Corresponding to the bounded-distance decoder, we define a t-corrector [Dal10].

Definition 8.9 (t-corrector)
A t-corrector is a map Corr : Fnq → Fkq that maps y ∈ Fnq to c if and only if d(y, c) ≤ t and
outputs ⊥ (error) else.

For the design of a code-based system, it is essential to find a fast decoding algorithm.
There are many code families with fast decoding algorithms, e.g., Goppa codes, (generalized)
Reed–Solomon codes, Gabidulin codes, Reed-Muller codes, algebraic- geometric codes, BCH
codes and others. Section 8.1.2 introduces classical Goppa codes which are often used for
cryptographic schemes as we explain in section 8.2. More details about families of codes can
be found in [MS77, HP03].
Fig 8.3 depicts the codewords of an [n, k, d]-code C as discrete points in Fnq of minimal

distance d. If we draw a ball around a codeword c of radius strictly smaller than t = (d−1)/2,
the packing radius, we enclose all vectors y ∈ Fnq that are closer to c ∈ C than to any other
codeword. In other words, the vector y equals c + e for some e ∈ Fnq of maximal weight
(d− 1)/2.

O

c

c+e

Figure 8.3.: Codewords of a linear code with minimal distance d.

Assume that we receive a faulty vector y and that the weight of the error is bounded by the
packing radius t. Hence we know that there is a unique codeword c which lies in the sphere
around y of radius t. The code has therefore an error-correction capability t. If the error in y
increases up to a weight of d− 1, it can be detected by testing if y lies in the code. The code
has an error-detection capability of d− 1. However, the correct codeword might no longer be
the closest one to y.
We can also see that a designer of a code would like to obtain a large minimum distance

that separates the codewords in order to get a high error-correction capability. A good code
aims to have a high information rate and error-detection/correction capacity while holding
the cost for encoding and decoding low.
By the observations above, we can make the following claim.
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Corollary 8.1
An [n, k, d]-code together with a bounded distance decoder provides a unique decoding for an

error in at most t = bd− 1

2
c coordinates. It detects an error if the error vector has weight at

most d− 1.

To obtain a bounded distance decoder, we introduce the definition of a syndrome.

Definition 8.10 (Syndrome)
Given the parity check matrix H of an [n, k, d]-code, we call the vector s = Hyt the syndrome
of the vector y ∈ Fnq .

For c ∈ C, we know that Hct = 0 by definition. For a received vector y = c + e, e /∈ C,
we obtain Hyt = Hct +Het = Het by linearity. This means that the syndrome of a received
vector y is characterized by the syndrome of the error pattern e that we need to remove in
order to retrieve c. For a binary linear code, the syndrome is the sum of the columns of H
indexed by e.
Decoding in general means to find the closest codeword to a received vector. On reception

of y, we have to compare y with all codewords, which takes time |C| for a general code. For
a linear code however, we know that for a received vector y = c + e, the syndrome s = Hyt

defines the error as s = Het. Decoding then means to find e given H, s such that y− e lies in
the code and e has minimal weight.
To recover the message, we thus need to solve the following problem.

Problem 8.1 (Syndrome-decoding problem (SD))
Given a parity check matrix H ∈ F(n−k)×n

2 of a binary code, a syndrome s ∈ Fn−k2 and an
integer ω, find a vector e ∈ Fn2 of weight ω such that Het = s.

The decisional version is proven to be NP-complete [BMvT78] for binary linear codes. For the
q-ary case see [Bar98, Theorem 4.1]. We will focus on the binary case. It is equivalent [LDW94]
to the bounded-distance-decoding problem which is defined as follows.

Problem 8.2 (Bounded-distance-decoding problem)
Given a generator matrix G ∈ Fk×n2 of a binary linear code C, a random vector y ∈ Fn2 and
an integer ω, find a vector e ∈ Fn2 of weight at most ω such that y + e ∈ C.

We focus on syndrome decoding that solves the syndrome decoding problem. The notion of
a coset comes in handy.
For x ∈ Fnq , we define a coset which has size qk = |C|:

x + C = {x + c | c ∈ C} .

Each vector in Fnq belongs to exactly one coset such that we obtain a partitioning of the space:

Fnq = C ∪ (x1 + C) ∪ . . . ∪ (x` + C)

where ` = qn−k − 1 and xi ∈ Fnq . Each coset has a shortest vector, the coset leader.
Two vectors belong to the same coset if and only if there difference lies in the code: Let

y1 = x + c1 ∈ Fnq and y = xi + c2 ∈ Fnq for c1, c2 ∈ C. Then y1 − y2 = c1 − c2 ∈ C.
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Conversely, if y1,y2 ∈ C, they clearly belong to the coset 0 + C. Otherwise, let y1,y2 /∈ C
and y1−y2 ∈ C. Then y1 = x+ c1 and y2 = x+ c2 for c1, c2 ∈ C and x /∈ C. So y1,y2 both
belong to the same coset than x.
Due to linearity, we deduce that all elements of a coset share the same syndrome s: Let

y1,y2 ∈ x+C. Then y1 = x+ c1 and y2 = x+ c2 for c1, c2 ∈ C. By linearity and definition,
we derive that Hyti = H(x + ci)

t = Hxt for i = 1, 2.
Syndrome decoding performs the following steps. Suppose that we receive an erroneous

message y = e + c at short distance e from the code. Let y ∈ x + C. We can compute its
syndrome w.r.t. the parity check matrix of the code: Hyt = H(c+ e)t = Het = s. Note that
the error vector e that we search belongs to the same coset than y. One strategy for decoding
is to find the coset to which y belongs, to find the coset leader x and to check if y − x lies
in the code. If this is the case, y − x is a good maximum-likelihood estimate for the sent
codeword. This requires to store a hashtable of all coset leaders indexed by their syndrome.

8.1.1. Bounds for linear codes

We can count the number of words at distance ` from y ∈ Fnq , N`(y). We have to enumerate
all vectors that differ in up to ` positions and there are q − 1 possibilities for each position:

N`(y) =
∑̀
i=0

(
n

i

)
(q − 1)i .

We remark that the largest binomial in the sum is the last which counts the number of vectors
furthest away from y.
We saw above that all spheres around the codewords of radius t = b(d− 1)/2c are disjoint

and we know that there are qn distinct words in Fnq . We conclude that Nt(y) ≤ qn and have
shown the following theorem.

Theorem 8.1 (Hamming bound)
For a q-ary [n, k, d]-code C that corrects up to t = b(d− 1)/2c errors,

|C|
t∑
i=0

(
n

i

)
(q − 1)i ≤ qn . (8.1)

We call the code C perfect, if equality holds in the above theorem; the spheres of radius t
around the codewords then cover Fnq . The maximal integer d0 such that

|C|
d0−1∑
i=0

(
n

i

)
(q − 1)i ≤ qn (8.2)

is called the Gilbert-Varshamov distance. Note that if we add the binomial
(
n
d0

)
, we exceed

the bound qn.
Let us consider a fixed code rate R := k/n and error rate D := d/n. For increasing length
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n, the last binomial of the sum in (8.2) dominates and we derive that

hq(D) ≥ 1−R

where hq is the entropy function. The sections A.1 and A.2 in the appendix present the
entropy function and asymptotic approximations that lead to the above result.
The largest integer δ0 = Dn for which equality holds is called the relative Gilbert-Varshamov

distance or asymptotic Gilbert-Varshamov bound [Bar98, section 1.2]. One can show that for a
random linear codes of code rate R and growing length n, for any ε > 0 the fraction of codes
with relative distance

δ ≤ δ0 − ε

is negligible [Bar98, section 1.3]. This means in return that most random linear codes meet
the Gilbert-Varshamov bound and have minimal distance δ0 for growing length. We can
hence assume that hq(D) = (1−R) + o(1) for most random linear codes.

Another lower bound on the number of codewords is the Singleton bound. We have seen
that an [n, k, d]-code can detect up to d−1 as the unique codeword can still be identified even
with an error in d− 1 coordinates. This implies that every codeword can be indexed by only
n− (d− 1) coordinates. As over a field of size q, we can only have qn−d+1 elements, we have
found a natural bound for the number of codewords.
Theorem 8.2 (Singleton bound)
For a q-ary [n, k, d]-code C it holds that

|C| ≤ qn−d+1 . (8.3)

A code for which equality holds, in (8.3) is called maximum-distance-separable; it attains the
maximal possible distance d = 1 + n − k. For fixed information rate R = k/n and growing
q, the distance derived from the Gilbert-Varshamov bound approaches quickly the Singleton
bound and the code is maximum-distance-separable with high probability.

As long as for an [n, k, d]-code, the spheres of radius d− 1 do not cover Fnq , i.e.,

|C|
d−1∑
i=0

(
n

i

)
(q − 1)i < qn ,

we can find a word not included in the spheres and add it to the code. The following theorem
summarizes the result and gives a lower bound on the size of the code.

Theorem 8.3 (Gilbert-Varshamov bound)
There exists a q-ary [n, k, d]-code C provided that

|C|
d−1∑
i=0

(
n

i

)
(q − 1)i ≥ qn .
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The proof can be found in [Moo05]. For a linear code, we have that |C| = qk and the
Gilbert-Varshamov bound is given by

d−1∑
i=0

(
n

i

)
(q − 1)i ≥ qn−k .

The theory of error-correcting codes is motivated by Claude Shannon who lay the founda-
tion for communication theory [Sha48]. He theoretically answered the question how much
redundancy is needed to ensure that a message sent over a noisy channel can be recovered.

Theorem 8.4 ( Shannon’s Second Theorem (1949))
Let p be the probability of each bit being in error for a message of length k. Let k be large.
To transmit a message, we require a proportion h(p) = p log2(1/p) + (1 − p) log2(1/(1 − p))
of additional redundant bits. Thus, if we let the total number of bits needed be n, we have
n = k + nh(p). Not only must the code be at least this long, but most (almost all) codes with
longer bit length ck, for any c > 1/(1−h(p)), allow us to recover the message under the given
assumptions, with probability approaching 1 as the length of the code goes to ∞.

The theorem says that for a random code of length as above, we can obtain the original
message most of the time. In practice it is quite difficult to construct codes that meet the
bound in the asymptotic limit.

8.1.2. Goppa code

The classical Goppa codes were introduced by Valery D. Goppa [Gop71a, Gop71b] and belong
to the more general family of alternant codes/generalized Reed-Solomon codes [MS77].

Definition 8.11 (Goppa code)
Let S = {α1, .., αn} be subset of Fqm of size n. Let g(x) be a polynomial of degree t in Fqm [x]

for which g(αi) 6= 0 for any αi. The Goppa code is then defined as

Γ(S, g) = {c = (c1, .., cn) ∈ Fnq :

n∑
i=1

ci
x− αi

≡ 0 mod g(x)} .

The set of elements ai is called the support of the code and g is its generator polynomial. To
guarantee that g does not vanish at its support, it is common practice to choose g to be a
nonlinear irreducible element of Fqm [x]. The code Γ is then called an irreducible Goppa code.
We remark that though constructed using support elements over Fqm and a polynomial

in Fqm [x] the codewords are only those n-tuples with entries in Fq satisfying the defining
equation.

Theorem 8.5
A Goppa code Γ(S, g) as defined above is a linear code of length n, dimension k ≥ n−mt and
minimum distance d ≥ t+ 1.
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Theorem 8.6
Let Γ(S, g) be a Goppa code as defined above where g(x) is defined over F2m of degree t and
has no multiple zeros. Then, the minimum distance is at least 2t+ 1.

Let Γ(S, g) be a binary Goppa codes defined by an irreducible Goppa polynomial g(x) of
degree t in F2m [x]. Then the code is t-error-correcting by theorem 8.6 and corollary 8.1.
For proofs of the above statements and more details about error correcting codes, we refer

to [MS77, HP03].

8.2. Code-based cryptography

The present chapter introduces well known code-based cryptographic schemes: the McEliece
and Niederreiter public-key cryptosystem as well as the CFS signature. Other crypto-
graphic primitives and schemes based on codes are for example zero-knowledge identifi-
cation schemes [Ste93, MGS11], ring signature schemes [MCGL11, DV09] and hash func-
tions [AFS05].

8.2.1. McEliece’s public-key cryptosystem

McEliece proposed code-based cryptography based on binary Goppa codes [McE78]. The
system can also be used with Goppa codes over a larger alphabet [Pet10].
Let n, k ∈ N and ω ∈ N be public system parameters. Let Γ = Γ(S, g) be a random

binary Goppa code over F2 of length n and dimension k with an error-correction capability
ω. The generator matrix G, as well as an n×n permutation matrix P and an invertible k× k
scrambling matrix S are randomly generated. The matrices G,P and S are kept secret. We
derive the public key as Ĝ = SGP which is a pseudo-random generator matrix of a Goppa
code C ′. As Ĝ shall be indistinguishable from a random matrix no efficient decoding algorithm
is known for the codes C ′. Conversely, the knowledge of P, S and G allows for an efficient
decoding.
We assume that an efficient decoding algorithm exists w.r.t. G but that Ĝ is pseudo-

random. The message m is a binary vector of length k. Encryption is performed by encoding
m using the public key Ĝ and adding a random error vector e ∈ Fn2 of weight ω:

y = mĜ+ e . (8.4)

A receiver of y needs to remove the error e and decode y+ e. A legitimate receiver can make
use of the hidden structure of the code that permits an efficient decoder and use the private
key. She computes yP−1 = mSG + eP−1 and uses the efficient decoder to retrieve mS. A
last linear algebra step recovers m. The first parameters proposed [McE78] were n = 1024,
k ≥ 524 and ω = 50; more recent propositions can be found in [BLP08].
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8.2.2. Niederreiter’s public-key cryptosystem

Niederreiter proposed a public-key cryptosystem [Nie86] in which the plaintext is encoded into
an error pattern of length n and constant weight t by use of an invertible function [Sch72, FS96]
φn,t:

φn,t : {0, 1}l →Wn,t

where Wn,t := {e ∈ Fn2 : wt(e) = t} and l = blog2(|Wn,t|)c for security reasons. The scheme
was originally proposed to use Goppa codes or Reed-Solomon codes. Together with general-
ized Reed-Solomon codes it was broken by Sidelnikov and Shestakov [SS92]. Niederreiter’s
system is the dual variant of the McEliece’s cryptosystem and the security of both is equiva-
lent [LDW94] when using Goppa codes.
We present a version of Niederreiter’s scheme that uses Goppa codes and achieves a shorter

public key by use of a systematic generator matrix [CS98, BS08].
Let m, t ∈ N be two system parameters and define n = 2m. Let Γ = Γ(S, g) be a binary

Goppa code of dimension k defined by a polynomial g(x) ∈ F2m [x] of degree t and its support
S = (α1, .., αn) ∈ F2m , i.e., g(αi) 6= 0. The code Γ is t-error-correcting and we assume that
an efficient decoding algorithm DΓ is known (to the owner of the private key only). Let H be
an mt× n binary parity check matrix in systematic form for Γ. The public key is H and the
private key is (S, g,DΓ).
To encrypt a plaintext x, we first have to convert it to an error pattern e of length n and

weight t. We define the set of such vectors by Wn,t := {e ∈ Fn2 : wt(e) = t} and use an
invertible function φn,t to derive e as e = φn,t(x). The ciphertext is then s = Het.

On reception of a ciphertext, the owner of the private key applies the decoding algorithm
DΓ to obtain e and φ−1

n,t to recover the plaintext x:

φ−1
n,t(DΓ(s)) = φ−1

n,t(e) = x .

8.2.3. Security of encryption schemes

The McEliece and Niederreiter scheme are equivalent [LDW94] when used with the same
code. Two assumptions guarantee the security of the system. First, an attacker should not be
able to attack a permuted Goppa code easier than a random code with the same parameters
where the random instance shall be difficult to solve. These approaches are called structural
attacks. Recently progress about the instinguishability problem has been achieved [FOPT10a,
FOPT10b, Sen00]. However, the results do not permit to ameliorate the attacks against binary
(quasi-dyadic, quasi-cyclic) Goppa codes as used in Niederreiter’s and McEliece’s systems. We
will therefore assume that an attack against these Goppa codes is as hard as for a random
code.
The second security assumption, is based on decoding: The recovery of e of weight ω, given

a vector s = Het, must be difficult without the knowledge of the private key. Remember that
this is the syndrome-decoding problem from section 8.1.
Canteaut and Chabaud [CC98] explained how to decode a binary linear code, thus breaking

McEliece, by applying an algorithm that finds a low-weight codeword. We can reduce the
decoding problem to the search of a low-weight codeword and conversely.
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Let C be the code of length n and ω a positive integer smaller than half the minimum
distance of the code. Suppose that one receives an encrypted message y ∈ Fn2 at distance
ω from the code (8.4). Necessarily, there is a closest codeword to y, denoted c, and the
difference y − c is a ω-weight codeword in 〈C,y〉. We remark that the code has a slightly
larger dimension, namely k + 1. Conversely, let C have a minimum distance larger than 2ω.
An error-vector e ∈ 〈C,y〉 of weight ω can thus not be in the code C but is in the larger code
〈C,y〉. We thus know that y − e is in C at distance ω from y.
For a given decoding problem based on a McEliece cryptosystem, one can simply append

the ciphertext y to the rows of the generator matrix of the code C and obtain the code 〈C,y〉.
Since the error-vector has a weight smaller than the minimum distance of the code C, it
belongs to 〈C,y〉. Applying an algorithm that finds a low-weight codeword on 〈C, y〉 then
allows to recover the message.
When attacking code-based cryptosystems, the instances one has to solve have ω smaller

than half the minimal distance d of the code C: ω ≤ b (d−1)
2 c. The solution is then unique

and the setting is called half-distance or bounded-distance decoding. All known half-distance
decoding algorithms achieve their worst-case behavior for the choice ω = b (d−1)

2 c.
Information-set decoding (ISD) is the most efficient method to solve the syndrome-decoding

problem 8.1 for a random linear code. Various research [Dum91, Bar98, BLP08, BLP11,
CS98, MMT11, FS09, CC98, BJMM12] has been done which indicates that for an arbitrary
linear code syndrome decoding is difficult. We present different techniques for information-set
decoding in chapter 9 and present our improved algorithm in chapter 10.

8.2.4. CFS signature scheme

The system [CFS01] is set up as in Niederreiter’s scheme in Sect. 8.2.2 for a t-error correcting
code Γ from the class of [n, k = n −mt, 2t + 1] binary irreducible Goppa codes. The public
and private key are H ∈ Fmt×n2 and (S, g,DΓ), respectively. Let h be a hash function that
applied on the document D outputs a vector s ∈ Fmt2 , s = h(D).
The signer applies h and decodes s using the decoding algorithm DΓ obtaining the signature

as the error pattern. The decoding is successful for a given vector s ∈ Fmt2 if s is at distance
at most t from a codeword in Γ. The decoding may therefore fail. We assume that n is large
and that n� t. Enumerating all vectors in the ball of radius t around a codeword gives the
number of decodable vectors as

t∑
i=1

(
n

i

)
≈
(
n

t

)
≈ nt/t! = 2mt/t! .

We compare this number with all possible vectors in Fmt2 to obtain the probability P that s is
decodable, P = 2mt/t · 1/2mt = 1/t! . To obtain a signature for D, the signer has to produce
t! different s on average to obtain one that is decodable. Two methods have been proposed
to compute s.
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Counter-Method One can alterate the document by appending a counter before hashing
until the decoding is successful. The signer produces syndromes sj = h(D||j) successively
until the decoder outputs an error pattern e = DΓ(sj) of weight t. The last step of the
signing process is to apply φ−1

n,t to e. The signature contains the counter j and φ−1
n,t(e):

(p||j) = (φ−1
n,t(e)||j). The verifier computes φ−1

n,t(p) = e and s = h(D||j). He accepts the
signature if s = Het.

Complete decoding The alternative lies in a change of the decoding algorithm such that
(almost) all vectors are decodable. The covering radius r0 is the smallest integer such that balls
of radius r0 around the codewords cover the whole space; it is difficult to calculate. Decoding
up to r0 would be ideal. We can obtain a good approximation using the following observation.
For a random vector y ∈ Fn−k2 , mt = n− k, the shortest vector e such that Het = y has most
likely a weight larger than t. The weight d0 is given by the Gilbert-Varshamov distance, the
largest integer such that

∑d0−1
j=0

(
n
j

)
≤ 2n−k .

A t-error decoder will therefore fail as the designed error-capability t is smaller than d0.
We would like to be able to encode a syndrome s = h(D) into an error pattern of weight
δ + t ≈ d0. If we can erase δ positions in s, by addition of columns of H, such that the
decoder outputs ê of weight t, we can express s as Hêt + Hzt where z indexes δ columns.
The vector e = ê+ z is of weight at most t+ δ. Modifying the size of δ, we can regulate the
proportion of vectors which are not decodable. If we take δ as the smallest integer such that(
n
t+δ

)
> 2mt, then any s is decodable with high probability. The signature is (p) = (φ−1

n,t+δ(e)).
For verification, one computes again φ−1

n,t+δ(p) = e and s = h(D) and compares s to Het.

The choice of the parameters m, t has a great impact on signing, verification and the
signature length. For the counter method, the signing costs performs t! trials dominated by
the cost to calculate the roots of a polynomial; the total cost are of order O

(
t!t2m3

)
. The

signature is a tuple (e, i). There are
(
n
t

)
error-vectors which can be indexed and there are

about t! different indices i. The signature length is about log(
(
n
t

)
· t!). There are possibilities

to transmit not all error bits, down to t− 2, and to guess them at the receivers side [CFS01,
CFS02]. This leads to a trade-off between verification time and signature length.
Storing the public key H needs memory of size O (mt2m) in the classical Niederreiter scheme
or O (mt(2m −mt)) using a systematic key. The verification process than adds t columns of H
and compares the value to the hash s of the message. We see that signing and signature length
increase rapidly with t and that the key size depends especially on m. The first proposed
parameter sets were (t = 10,m ≥ 15) and (t = 9,m ≥ 16). They considered the most efficient
attack at that time [CC98].

8.2.5. Attacks against the CFS signature

One can distinguish between structural and decoding attacks that either reveal a private key
or forge a signature. We will assume that a structural attack is infeasible and explain previous
achievements of decoding algorithms in the following.
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To forge a CFS signature without knowledge of the private key, an attacker has to decode
one vector sj , derived from the document by hashing, without knowing the efficient decoding
algorithm; he has to solve one out of many instances of the syndrome-decoding problem for
the same code:

Problem 8.3 (One-out-of-many-syndrome decoding (OMSD))
Given the parity check matrix H ∈ F(n−k)×n

2 for a code C, a set of vectors S = {sj ∈ Fn−k2 }
and an integer ω, find an error pattern e ∈ Fn2 of maximal weight ω such that Het = sj for
at least one j.

Information-set decoding (ISD) is the most efficient method to solve the syndrome-decoding
problem 8.1 with a single target and has been applied to the case of many instances 8.3 [JJ02].
The asymptotic analysis [Sen11] shows that the method gains a factor of

√
|S|; the exponential

in the complexity is of order 2mt/2. A more efficient way is to make use of the birthday paradox
which leads to the generalized birthday algorithm.

Generalized birthday algorithm (GBA)

The generalized birthday algorithm (GBA) was first presented by Wagner to solve the k-sum
problem [Wag02] and later extended in [MS09]. Bleichenbacher then proposed to use GBA
on coding problems in order to solve OMSD (P 8.3) applied on the CFS signature. It is
effective to break a CFS signature with the initially proposed parameter sets (t = 9, 10) in
time complexity less than 280; it weakens (almost) all parameter sets of interest as detailed
in [FS09]. We review the attack to forge a CFS signature, as proposed by Bleichenbacher and
presented by Finiasz and Sendrier [FS09], in the following.
Given the parity check matrix H of an CFS signature scheme, a document D and its

syndromes sj , we want to find an error pattern e ∈ Fn2 of weight ω such that Het = sj
for at least one j. We restate the problem as follows: Find elements ei ∈ Wn,ωi such that
H(e1 + e2 + e3)t = sj where wt(e1 + e2 + e3) = w. The vectors ei are indexing the columns
of H that sum up to a syndrome sj . The weights ωi, i = 1, 2, 3 such that ω1 + w2 + w3 = w

are algorithm parameters.

• The first step is to create 3 lists Li, of column sums of H, that is, of random elements
(Heti, ei), ei ∈Wn,ωi and one list S of syndromes sj .

• In the second step, we join the list L1 with S and the list L2 with L3 and obtain
elements (sj + Het1, e1) ∈ L1S and (Het2 + Het3, e2 + e3) ∈ L23, respectively. We keep
those elements for which the first component is already zero on the λMSBs. The optimal
λ is chosen to reduce time and memory requirements as we will outline later.

• Joining these elements in the last step, leads to tuples (sj+Het1+Het2+Het3, e1+e2+e3).
We have found a solution, if the column sum sj +Het1 +Het2 +Het3 is zero for at least
one joined element.
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S L1 L2 L3

LS1 L23

L

Figure 8.4.: Generalized birthday attack.

Fig. 8.4 illustrates the algorithm. We assume that ei, sj are random and that all column
sums are equally distributed elements. To reduce the memory usage, we can create the
elements in S, LS1 and L2 on the fly. The memory requirement of the algorithm is given by
the size of the largest list:

M = O (max(|Li|, |L23|)) .

The starting lists Li are of maximal size
(
n
ωi

)
. The size of L23 is of order

O
(

min(

(
n

ω2 + ω3

)
, |L1| · |L2|) · 2−λ

)
.

The syndromes are generated when needed to reduce the memory requirements. The algorithm
has a memory complexity of

M = M · log(M) .

A join algorithm that searches collisions between two lists Li, Lj and outputs a list L performs
a sorting w.r.t. λ bits (e.g. MSB) and then compares for collisions. Neglecting polynomial
factors1 it takes time

Tjoin = Õ (max(|Li|, |Lj |, C))

where C counts the number of comparisons. The memory requirement is given by the largest
lists handled:

Mjoin = Õ (max(|Li|, |Lj |, |L|)) .

We expect in the second step a number of comparisons of

C1S = |L1S | = O
(
|S| · |L1| · 2−λ

)
and C23 = O

(
|L2| · |L3| · 2−λ

)
.

1We denote by Õ () the order of the exponential factors appearing in the complexity and omit logarithmic
factors.
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The last join then searches the solution comparing about Cl = O
(
|L23| · |L1S | · 2λ−mt

)
elements. Altogether, the total time complexity is

T = Õ (max(|L1|, |L2|, |L3|, |S|, C1S , C23, |L23|, Cl) .

As we want to find at least one element in the final list |L|, we obtain a lower limit on the
number of syndromes in S given by the limits on the parameters ωi so that

|S| = O

(
2r+λ(
n

ω2+ω3

)(
n
ω1

)) .

We assume here that we create all elements at the bottom level and store about
(

n
ω2+ω3

)
· 2−λ

elements in |L23|. Notice that the size of the lists L1; L23 is in this way related to the minimal
number of syndromes. If |S| is large, we can create only a part of the elements in the starting
lists and reduce S.

In practice, we will choose all ωi close to ω/3:

ω1 = b
(
n

ω/3

)
c, ω2 = d

(
n

ω/3

)
e, ω3 = w − ω1 − ω2 .

The restrictions λ are then chosen due to the following observation. We distinguish two cases.
For fixed r,m, ω, ωi, the complexity may either be dominated by the time to create the (fictive)
list L1S or by the size of the lists S, L23. In the first case, the longest time spend will be of
order

|L1S | = O
(

2r/

(
n

ω2 + ω3

))
and we minimize the storage use by choosing

λ = blog2(

(
n

ω2 + ω3

)
/

(
n

ωmax

)
)c

where ωmax = maxi(ωi). In the second case, we attain the optimal situation if we set λ =

b0.5 · log2(
(

n
ω2+ω3

)2( n
ω1

)
/2r)c balancing the size of the lists in this way. The necessary memory

can further be reduced by creating L3 on the fly and creating not all possible
(
n
ω1

)
elements.

The overall time and memory complexity are

T = T · log(T ) andM = M · log(M)

where

T = M = O

(
2

√
2r/

(
n

ω1

))
if 2r/

(
n

ω2 + ω3

)
> 2

√
2r/

(
n

ω1

)
T = O

(
2r/

(
n

ω2 + ω3

))
and M = O

((
n

ωmax

))
else.
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Preventing GBA. An alternative to the standard CFS signature is to create two (or more)
dependant signatures of the same document using different hash functions. This version is
called parallel-CFS [Fin10]; it is more efficient than augmenting the parameters in CFS for the
same level of security. The drawback of the technique is that it doubles the signature length
and the time for signing and verification. (A similar technique was presented in [NPS01].)
Now, an GBA has to find two signatures for the same document in asymptotic time complexity
O
(
2mt(3/7+o(1)

)
.
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Chapter 9

Information-set decoding by classical
means

To solve an instance of the syndrome-decoding problem over a binary linear code, one has to
find a set of ω columns of a given matrix H ∈ Fn−k×n2 that sum up to a syndrome s over
Fn−k2 . This is equivalent to say that we search a binary vector1 e ∈ Fn2 such that He = s.
The syndrome depends on a message x, we want to recover. We hence sometimes write s(x)

for s. A brute-force algorithm would require to compute
(
n
ω

)
column sums. A more efficient

approach is called information-set decoding. It was already mentioned in the original work by
McEliece [McE78] and is inspired by the work of Prange [Pra62].
information-set decoding proceeds in two mayor steps, an initial transformation step and

a search step. Both steps are executed repeatedly until the algorithm succeeds. The initial
transformation randomly permutes the columns of H. In particular, this permutes the ω
columns of H that sum to s(x), and thus permutes the coordinates of e. Then we apply
Gaussian elimination on the rows of H in order to obtain a systematic form

H ′ = [Q | In−k]

where Q ∈ F(n−k)×k
2 and In−k is the (n− k)-dimensional identity matrix.

Researchers have proposed many techniques to lower the cost of the init phase. We will
shortly review them in the following. Our focus lies however on the search phase. Section 9.1
presents previous techniques. We can considerably speed-up the running time by applying
the extended representation technique as we explain in chapter 10.

Init phase. At each iteration of the ISD algorithm one chooses an information set, a random
set of n − k columns of H, and applies row operations to bring H into systematic form.
Instead of starting each time from the original parity check matrix, one can exchange only
some columns in the previous information set [CC94, CC98, BLP08]. Also the Gaussian
elimination can be sped-up by adding the sum of rows to other rows [Bar06, BLP08] to
obtain zeros in the first columns. Other improvements emerge from reuse of previous column
additions [BLP08].

1Vectors are denoted as column vectors in the following.
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9.1. Techniques for the search phase - A short survey

Let H ′ be in systematic form:
H ′ = [Q | In−k]

where Q ∈ F(n−k)×k
2 and In−k is the (n − k)-dimensional identity matrix. The Gaussian

elimination operations are also applied to s(x) which results in s̃(x).

Lee and Brickell. Let us fix an integer p < ω. We assume that the permutation was such
that the corresponding error vector has few p non-zero coordinates in its first k coordinates
and that most of its weight is in the last n− k positions:

ẽ = (ẽ1, ẽ2)

where wt(ẽ1) = p and wt(ẽ2) = ω − p. This approach is due to Lee and Brickell [LB88]. In
the search step of ISD, we try to find ẽ1 by an exhaustive search. We compute for every linear
combination of p columns from Q its Hamming distance to s̃ : wt(Qẽ1 + s). If the distance is
exactly ω − p, we can add to our p columns those ω − p unit vectors from In−k that exactly
yield s̃(x). Undoing the Gauss elimination recovers the desired error vector e. Obviously, we
can only succeed if the initial column permutation results in a permuted e that has exactly
p ones in its first k coordinates and ω − p ones in its last n− k coordinates. The probability
for this event is

PLB =

(
k
p

)(
n−k
ω−p
)(

n
ω

)
such that P−1

LB corresponds to the average number of iterations. Per run, we need to enumerate

TLB =

(
k

p

)
column sums that we check immediately for the right distance to the target. The overall time
is then

TLB · P−1
LB .

The space requirement is constant.
Optimization of p leads to a running time of 20.05752n in the worst case, that is, for k/n

that maximizes the time.

Leon and Stern. Leon observed that one can speed up Lee–Brickell’s algorithm by consid-
ering only the vectors who have a block of ` bits that are zero , ` < n − k. The probability
for such an event is

PLeon =

(
k
p

)(
n−k−`
w−p

)(
n
w

) .
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Stern [Ste89] observed that one can further improve on the running time when replac-
ing in the search step the brute-force search for weight-p linear combinations by a collision
search. Dumer proposed [Dum98] the same idea independently and derived a similar algo-
rithm [Dum91, Bar98]. Stern proposes to search for a vector that has few p non-zero positions
in the first k coordinates, an `-block of zeros and most of its weight in the last n−k−` positions
as illustrated in figure 9.1.

p/2 p/2 0 ω − p
k/2 k/2 ` n− k − `

Figure 9.1.: Weight distribution of ẽ and classical concatenation by Stern.

Consider the projection of Qẽ to its first ` coordinates, denoted by (Qẽ)[`]. Due to the
special structure of ẽ, it holds that

(Qẽ)[`] = Q[`]ẽ1

where ẽ1 denotes the first ` coordinates of ẽ. This means that after the search for ẽ1, the
vector matches the target already on ` coordinates.
To find the p columns of Q[`] that sum up to s̃[`], we split Q[`] into two disjoint column sets

Q1 = {qi | i ∈ [1,
k

2
]} and Q2 = {qi | i ∈ [

k

2
+ 1, k]}

each of size k/2 that are indexed by I1 and I2, respectively. We can write the collision problem
as ∑

i∈I1

qi = s̃[`] +
∑
i∈I2

qi (9.1)

where I1 ⊂
[
1, k2

]
, I2 ⊂

[
k
2 + 1, k

]
and |I1| = |I2| = p

2 . We create two lists L1,L2 that
contain all possible sums of the left and right side of (9.1), respectively. The lists are of size
L =

((k+`)/2
p/2

)
. A collision between the lists is equivalent to a set I = I1 ∪ I2 of p columns

that sum up to the syndrome on the first ` coordinates. We expect to find L2/2` collisions.
If the remaining coordinates differ from s̃(x) by a weight-(ω− p) vector, we can correct these
positions by adding suitable unit vectors from In−k.

The running time of each iteration is given by the size of the lists and the number of
collisions (section 1.2):

TStern = max(

(
k/2

p/2

)
,

(k/2
p/2

)2
2`

) .

Multiplied by the inverse of the probability that the initial phase chose the right permutation:

PStern =

(k/2
p/2

)2(n−k−`
ω−p

)(
n
ω

) ,

we obtain the total running time:
TStern · P−1

Stern .
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Under the constraints that 0 ≤ p ≤ ω and 0 ≤ ` ≤ n − k − ω + p, we can minimize
the running time. The worst-case time complexity is 20.05562n where optimal parameters are
p = 0.0031n and ` = 0.0134n. The memory is of order 20.0134n.

Ball-collision decoding. The ball-collision technique of Bernstein, Lange and Peters [BLP11]
from 2011 lowers the complexity by allowing few, q, ones in the `-block. They enumerate all
possible p/2-column sums within the intervals [1, k/2] and [k/2+1, k] as in Stern’s algorithm.
Additionally, the algorithm computes all q/2-column sums within the intervals [k+ 1, k+ `/2]

and [k + `/2 + 1, k + `]. The number of all combined elements per list is SBall =
(k/2
p/2

)(l/2
q/2

)
.

Analogous to the previous analysis, we obtain an asymptotic time

TBall = max(SBall,
S2
Ball

2`
) .

The probability is slightly increased:

PBall =

(k/2
p/2

)2(l/2
q/2

)2(n−k−`
ω−p−q

)(
n
ω

) .

The overall time complexity is TBall · P−1
Ball. The worst-case occurs for k/n = 0.4548 where

it takes the value 20.05559n using 20.139n space. The optimal parameters are p = 0.032n, ` =

0.139n and q = 9.6E − 05n.
Ball-collision decoding is very similar to a variant of ISD proposed by Finiasz and
Sendrier [FS09] in 2009. Both algorithms as well as Dumer’s algorithm [Dum91, Bar98]
have the same asymptotic worst-case complexity.

Finiasz and Sendrier. Finiasz and Sendrier [FS09] proposed to transform H into quasi-
systematic form

H̃ =

[
Q | 0

In−k−`

]
with Q ∈ F(n−k)×(k+`)

2 . The lists L1,L2 each contain all weight-p2 sums out of k+`
2 columns.

The collision problem we need to solve is the following: Find index sets I1 ⊂ [1, k+`
2 ] and

I2 ⊂
[
k+`

2 + 1, k + `
]
of size p/2 such that∑

i∈I1

qi = s̃[`] +
∑
i∈I2

qi . (9.2)

The lists are of size SFS =
((k+`)/2

p/2

)
which represents the used memory. The time per iteration

is given by

TFS = max(SFS ,
S2
FS

2`
) .
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The probability that the error vector has the required weight distribution is

PFS =

((k+`)/2
p/2

)2(n−k−`
ω−p

)(
n
ω

) .

We remark that for ` > 0 the probability is larger than PStern which in return means that
we need to perform less iterations on average. The overall time complexity is TFS · P−1

FS . The
worst-case is the same as for Ball-collision decoding. For an information rate k/n = 0.4548 the
time is 20.05559n using 20.139n space. The optimal parameters are p = 0.032n and ` = 0.139n.

The setting by Finiasz and Sendrier is known as generalized information-set decoding which
we present in more detail in the following section. This research as well as ball-collision show
that it makes sense to spread the smaller part of the weight of e over a window of k + `

coordinates and to eliminate the block of only zeros (figure 9.3).

9.2. Generalized information-set decoding

We now give a detailed description of a generalized information-set-decoding (ISD) framework
as described by Finiasz and Sendrier [FS09] in 2009. Recall that the input to an ISD algorithm
is a tuple (H, s) where H ∈ F(n−k)×n

2 is a parity check matrix of a random linear [n, k, d]-code
and s = He is the syndrome of the unknown error vector e of weight ω := wt(e) = bd−1

2 c.
ISD is a randomized algorithm that iterates two mayor steps until the solution e is found.

The first part is a linear transformation of the parity check matrix H depending on a random
permutations of the columns. The second step is a search phase.
During the initial transformation, we permute the columns of H by multiplying with a

random permutation matrix P ∈ Fn×n2 . Then we perform Gaussian elimination on the rows
of HP by multiplying with an invertible matrix T ∈ F(n−k)×(n−k)

2 . This yields a parity check
matrix H̃ = THP in quasi-systematic form containing a 0-submatrix in the right upper corner
as illustrated in figure 9.2. We denote by QI the projection of Q to the rows defined by the
index set I ⊂ {1, . . . , n−k}. Analogously, we denote by QI the projection of Q to its columns.
In particular we define [`] := {1, . . . , `} and [`, n− k] := {`, . . . , n− k}. We denote the initial
transformation Init(H) := THP .

H̃ =

0

︷ ︸︸ ︷k + ` ︷ ︸︸ ︷n− k − ` ︷︸︸︷ `︷
︸︸

︷ n− k − `︸ ︷︷ ︸
p

︸︷︷︸
ω − p

Q[`]

In−k−`Q[`+1,n−k]

Figure 9.2.: Parity check matrix H̃ in quasi-systematic form.
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We set s̃ := T s and look for an ISD-solution ẽ of (H̃, s̃), i.e., we look for an ẽ satisfying
H̃ ẽ = s̃ and wt(ẽ) = ω. This yields a solution e = P ẽ to the original problem. Notice
that applying the permutation matrix to ẽ leaves the weight unchanged, i.e., wt(e) = ω, and
THe = H̃ ẽ = s̃ = T s implies He = s as desired. In the search phase, we try to find all
error vectors ẽ that have a specific weight distribution, i.e., we search for vectors that can
be decomposed into ẽ = (ẽ1, ẽ2) ∈ Fk+`

2 × Fn−k−`2 where wt(ẽ1) = p and wt(ẽ2) = ω − p.
Figure 9.3 shows the distribution of the ones in ẽ. Since P shuffles e’s coordinates into random

|ẽ1| = p |ẽ2| = ω − p
k + ` n− k − `

Figure 9.3.: Weight distribution of ẽ.

positions, ẽ has the above weight distribution with probability

P =

(
k+l
p

)(
n−k−l
ω−p

)(
n
ω

) . (9.3)

The inverse probability P−1 is the expected number of repetitions we need to perform until
ẽ has the desired distribution.
Due to the systematic form of H̃, we see that

H̃ ẽ =

[
Q[`]ẽ1

Q[`+1,n−k]ẽ1 + ẽ2

]
= s̃ .

This allows us to search at first for candidates ẽ1 and to set ẽ2 to match the syndrome.
First, we search the truncated vector ẽ1 ∈ Fk+`

2 that represents the position of the first p
ones. For the computation of ẽ1 we focus on the submatrix Q[`] ∈ F`×(k+`)

2 . Since we fixed the
0-submatrix in the right-hand part of H̃, we ensure that Q[`]ẽ1 exactly matches the syndrome
s̃ on its first ` coordinates.
Having found candidates ẽ1, we recover the full error vector ẽ = (ẽ1, ẽ2), the missing

coordinates ẽ2 are obtained as the last n− k − ` coordinates of Qẽ1 + s̃.
The goal in the ISD search phase is to compute the truncated error vector ẽ1 efficiently.

Finding an ẽ1 with such a property is called the submatrix matching problem [MMT11].

Definition 9.1 (Submatrix Matching Problem)
Given a random matrix Q ∈R F`×(k+`)

2 and a target vector s ∈ F`2, the submatrix matching
problem (SMP) consists in finding a set I of size p such that the corresponding columns of Q
sum up to s, i.e., to find I ⊆ [1, k + `], |I| = p such that

σ(QI) :=
∑
i∈I

qi = s, where qi is the i-th column of Q.

Note that the SMP itself can be seen as just another syndrome-decoding instance with parity
check matrix Q, syndrome s ∈ F`2 and parameters [k + `, `, p].
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We already saw in the previous section several ideas how to obtain ẽ1 in a classical way by
exhaustive or collision search. The next chapter presents a new approach that uses the simple
or extended representation technique from chapter 4 and 5.
Let ColumnMatch be the algorithm chosen in the search phase. We describe the ISD in

pseudocode in algorithm 9.1. The initial phase permutes some columns of the parity check
matrix and perform Gaussian elimination to bring the matrix in quasi-systematic form. The
running time is polynomial in n. The last step goes through all elements that are found by
ColumnMatch and needs to perform |L|p column additions to check for the weight. Both
parts represent low cost in comparison to the search phase that builds the list L and the
number of iterations.

Algorithm 9.1: Generalized ISD

Input: Parity check matrix H ∈ F(n−k)×n
2 , syndrome s = He with wt(e) = ω

Output: Error e ∈ Fn2
Parameters: p, `

Repeat . about P−1 times
Compute H̃ ← Init(H) and s̃← T s.
Compute L = ColumnMatch(Q[`], s̃[`], p)

For each Solution ẽ1 ∈ L
If wt(Qẽ1 + s̃) = ω − p then

Compute ẽ← (ẽ1, ẽ2) ∈ Fn2 where ẽ2 ← (Qẽ1 + s̃)[`+1,n−k]

Output e = ẽP .

Let T := T (n,R; p, `) denote the running time of ColumnMatch. The average running time
of algorithm 9.1 is P−1 · T .

9.3. Complexity of generic decoding algorithms for random
linear codes

The running time of decoding algorithms for linear codes is a function of the three code pa-
rameters: the code length n, the dimension k and the minimal distance d. With overwhelming
probability random binary linear codes attain an information rate R := k

n which is close to the
Gilbert Varshamov bound 1 − h(D) (section 8.1) where D := d

n and h is the binary entropy
function.
We distinguish between bounded-distance and full-distance decoding which determines the

integer ω in the decoding problem. For bounded-distance decoding, we set W := ω/n = D/2

which is the setting of the syndrome-decoding problem 8.1.
For full decoding, in the worst case we need to decode a highest weight coset leader of the

code C, its weight ω corresponds to the covering radius of C which is defined as the smallest
radius r such that C can be covered by discrete balls of radius r. The Goblick bound [TG62]
ensures that r ≥ nH−1(1 − R) + o(n) for all linear codes. Independently, Blinovskii [Bli87]
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and Levitin [Lev88] further proved that this bound is tight for almost all linear codes, i.e.,
r = nH−1(1 − R) + o(n). This justifies our choice W = H−1(1 − R) for the full decoding
scenario.
We can thus express the running time T (n,R) as a function in n and R only. One usually

measures the complexity of decoding algorithms asymptotically in the code length n. Since
all generic decoding algorithms run in exponential time, a reasonable metric is the complexity
coefficient F (R) as defined in [CG90]:

F (R) = lim
n→∞

1

n
log T (n,R)

which suppresses polynomial factors since lim 1
n log p(n) = 0 for any polynomial p(n). With

this notation, the asymptotic running time of a generic decoding algorithm (such as algo-
rithm 9.1) is

T (n,R) = 2nF (R)+o(n) ≤ 2ndF (R)eρ

for large enough n. We obtain the worst-case complexity for the information rate R that
maximizes F (R), that is, by taking max0<R<1dF (R)eρ. Here, dxeρ := dx · 10ρe · 10−ρ denotes
rounding up x ∈ R to a certain number of ρ ∈ N decimal places.
The classical ISD algorithms as presented in section 9.1 obtain an asymptotic worst case

complexity as presented in table 9.1. We distinguish between bounded-distance and full-
distance decoding, that is, where W = D/2 and W = D, respectively.

Algorithm half-dist. full dec.
time space time space

Lee-Brickell 0.05752 - 0.1208 -
Stern 0.05564 0.0135 0.1167 0.0318
Ball-collision 0.05559 0.0148 0.1164 0.0374

Table 9.1.: Comparison of worst-case complexity coefficients, i.e., the time columns represent the
maximal complexity coefficient F (R) for 0 < R < 1.
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Chapter 10

Improved information-set decoding

We adopt the setting of generalized information-set decoding which we introduced in sec-
tion 9.2. Let H̃ be a parity check matrix in quasi-systematic form

[
Q | 0

In−k−`

]
(like in

figure 9.2) where Q ∈ F(n−k)×(k+`)
2 is a random matrix. We seek to reduce the running time

needed to solve a decoding problem by information-set decoding (ISD) w.r.t. H̃ and a syn-
drome s̃. In this section, we deal with the subproblem of finding a vector ẽ1 ∈ Fk+`

2 of weight
p such that Q[`]ẽ1 = s̃[`] where Q[`] are the upper ` rows of Q.
The running time of an ISD algorithm depends essentially on the time to find ẽ1 and the

probability P that the vector is a part of the scrambled solution to the original decoding
problem 9.3. Whenever the search phase for ẽ1 does not reveal the solution, we need to
repeat with a permuted matrix. The average number of repetitions is given by the inverse of
P.
For a simpler notation, we redefine this decoding problem in the present chapter by setting

Q = Q[`], e = ẽ1 and s = s̃[`]. Notice that finding a sum of p columns of Q that exactly
matches s is a vectorial version of the subset-sum problem over F2. The present chapter
shows how we can apply the most efficient techniques to solve the subset-sum problem
(chapters 4 and 5) in order to solve the column match problem. A faster subroutine to find
the truncated vector ẽ1 then improves the overall running time of information-set decoding
(algorithm 9.1).

This chapter is an extended version of the paper [BJMM12] by B., Joux, Meurer and May.
It is organized as follows. We briefly describe the application of the simple representation
technique on ISD in section 10.1. It was presented by May, Meurer and Thomae [MMT11] and
discovered at the same time by Johansson and Löndahl [JL11]. We propose a method to reduce
the memory requirement of the original algorithm in section 10.1.2. The following section 10.2
explains in detail how to extend the approach by use of the extended representation technique.
We develop the new algorithm that solves the submatrix matching problem and present a
complexity analysis. Subsection 10.2.4 shows how to reduce the memory requirement. We
provide parameters and complexity results derived from a numerical optimization for bounded-
distance and full-distance decoding. Section 10.2.3 compares the asymptotic running time of
the presented ISD algorithms and shows that the running time can be decreased considerably
by our technique. An implementation of our algorithm reveals that the subtask of an efficient
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collision search is important in practice. We propose a variant of a merge-join routine in
section 10.4 and present the results of our experiments in section 10.5. We provide a theoretical
analysis for cases in which our algorithm will exceed the claimed complexity in section 10.6
and present a provable version of our algorithm in section 10.7.

10.1. Simple representation technique in the search phase

The collision search problem in the classical approach (section 9.1) searches disjoint index
sets I1 ⊂ [1, (k + `)/2] and I2 ⊂ [(k + `)/2, k + `] of size |I1| = |I2| = p

2 such that∑
i∈I1

qi =
∑
i∈I2

qi + s . (10.1)

This ensures that the combined set I = I1 ∪ I2 has exactly size p.
Already in [FS09, Appendix A], the authors consider overlapping sets. May, Meurer and

Thomae [MM11] provide a detailed description of the best strategy and show that the running
time for information-set decoding can be reduced in comparison to previous attempts at the
cost of an increased memory requirement. Johansson and Löndahl [JL11] present the same
idea. Using the representation technique, one chooses I1 and I2 no longer from half-sized
intervals but they both are chosen from the whole interval [1, k + `] such that I1 ∩ I2 = ∅.
The vector e is no longer built as a concatenation but as a sum of two vectors ei ∈ F k+`

2 of
half weight: e = e1 + e2. Figure 10.1 illustrates the idea.

|I| = p

e

|I1| = p/2
e1

|I2| = p/2
e2

Figure 10.1.: Decomposition of e as sum of vectors e1 and e2.

Thus, every solution I admits many such representations (I1, I2) and equivalently every
solution vector e permits representations (e1, e2). The number of ways to pick p/2 out of p
columns determines the number of representations:

NMMT =

(
p

p/2

)
.

Note that the NMMT ≈ 2p which is exponential in n and that all these representations
obviously lead to the same solution. A classical collision search in contrast searches a unique
pair of sets I1, I2 indexing either the first half or second half of columns of Q[`].
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An algorithm could enumerate all possible p/2-column sums out of k + ` columns in two
lists L1,L2 where to all elements in the second list we additionally add s. It then applies a
collision search to find same column sums. We will output all colliding index sets I = I1 ∪ I2

of size p. We would even find the solution NMMT times in this way.

This first approach is very expensive as we increase the number of created elements in
L1,L2 from

((k+`)/2
p/2

)
to
(
k+`
p/2

)
compared to Stern’s algorithm. We have not made use of the

fact that there are exponentially many representations in the colliding elements L1 ./ L2.

We can overcome this problem as follows. Let us assume that the column sums are equally
distributed vectors in F`2. This is a reasonable assumption as we assume that the given matrix
is indistinguishable from a random matrix. Let 0 ≤ r ≤ ` be a parameter. The probability
that

(
∑
i∈I1

qi)[r] = t (10.2)

for some random vector t ∈ Fr2 is then 2−r. If we choose the parameter

r ≈ log2(NMMT ) ,

we can expect that on average one I1, belonging to a representation (I1, I2), satisfies (10.2).
Consequently, I \ I1 satisfies

(
∑
i∈I\I1

qi)[r] = s[r] + t . (10.3)

Conversely, for arbitrary index sets (J1, J2) ∈ L1 × L2 that fulfil (10.2) and (10.3), we know
that

(
∑

i∈J1∪J2

qi)[r] = s[r] .

It remains to check if equality hold on all ` coordinates and if J1 ∩ J2 = ∅ in which case we
have found the solution I = J1 ∪ J2 and (J1, J2) is one out the many representations. For an
unlucky guess of t, no representation might fulfil (10.2) and (10.3). We then need to repeat
with a changed target.

10.1.1. A simple representation technique algorithm

An algorithm along these lines executes the following steps. Pick a target vector t ∈ Fr2 at
random. Create p/2-column sums out of k + ` columns of Q that sum up to t or s[r] + t on
its first r coordinates. This is equivalent to enumerating vectors e1, e2 ∈ Fk+`

2 of weight p/2
such that

(Qe1)[r] = t (10.4)

and
(Qe2)[r] = s[r] + t . (10.5)
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The elements are enumerated into two lists:

L1 = {e1 ∈ Fk+`
2 | wt(e1) =

p

2
and (Qe1)[r] = t} and

L2 = {e2 ∈ Fk+`
2 | wt(e2) =

p

2
and (Qe1)[r] = s[r] + t}

of expected size

L = E [|L1|] = E [|L2|] =

(
k+`
p/2

)
2r

=

(
k+`
p/2

)
NMMT

. (10.6)

We then call an efficient join routine that searches for collisions over all ` coordinates, i.e.,

Q(e1 + e2) = s ,

and checks if the colliding elements have correct weight: wt(e1 + e2) = p. The join can be
performed as described in section 1.2 by sorting the elements in lexicographical order and
passing through the sorted lists. The complexity is max(L,C,NSol) in time and L in memory
where C is the number of collisions that occur during the collision search and NSol is the final
number of solutions. For uniformly distributed elements, the probability for a match on all `
coordinates is 2−`+r. We expect that C ≈ L2

2n−r .

So far, we have not explained how to create the lists L1,L2. We invoke a classical strategy
and build the elements e1 ∈ L1 and e2 ∈ L2 from elements of half length and half weight.
That is we split the columns of Q into two sets: Q = [Q1|Q2] and create lists:

B1 = {(x, Q1x) |x ∈ F(k+`)/2
2 , wt(x) =

p

4
} andB2 = {(y, Q2y) |y ∈ F(k+`)/2

2 , wt(y) =
p

4
}

of size B =
((k+`)/2
p/4+ε/2

)
. The number of elements ei = [x | y] where (x,y) ∈ B1 × B2 and which

satisfy (10.4) or (10.5) can be estimated as CB ≈ B2/2r. The cost to create the lists L1

and L2 by a merge-join routine is then max(B,CB, L) in time and max(B,L) in space. The
overall running time to find the solution is TMMT = max(B,CB, L, C,NSol) using a memory
max(L,B).
Assume that the given submatrix matching problem Qe = s has a solution e of weight p.

We can only find it in the above presented way, if the ones are equally distributed such that
e has exactly p/2 one-coordinates in the intervals [1, (k + `)/2] and [(k + `)/2 + 1, k + `] as
the bottom procedure does not enumerate all possible column sums. It restricts itself to twice
p/4-column sums. We can precede as in section 3.1.1 where we proposed either a deterministic
window method or a probabilistic approach. The probability for that the vector splits exactly
as we wish is :

PB =

((k+`)/2
p/2

)2(
k+`
p

) (10.7)

which is inverse polynomial in n. Define ck` = (k + `)/n and cp = p/n. Due to Sterling’s
formula, we can compute that

PB ≈

√
2(k + `)

πp(k + `− p)
=

√
2ck`

πcp(ck` − cp)
1√
n

= O
(

1√
n

)
.
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We can choose partitions P1, P2 of [1, k + `] and create baselists

B1 = {x ∈ Fk+`
2 | wt(x) =

p

4
and support(x) ⊂ P1}

and
B2 = {y ∈ Fk+`

2 | wt(x) =
p

4
and support(y) ⊂ P2}

of size B. If we choose independent random partitions for L1 and L2, we can guarantee an
independent splitting for their elements of probability (PB)2. A merge-join creates elements
of weight p/2. We repeat the creation of elements for L1 and L2 in this way by choosing new
partitions each time. Repeating a polynomial number of times, the probability of success to
pick the right partition goes exponentially close to 1.
The right choice of the permutation in the initial phase of the information-set-decoding

algorithm determines if the submatrix matching problem leads to a solution to the original
decoding problem. As we assume that the solution is unique, we will only find e for the
right permutation. The probability that the solution to the original decoding problem after
permutation has a truncated part e of weight p and that most of its weight lies in the last
n− k − ` coordinates is P as given in (9.3). The average number of repetitions of the above
algorithm is then P−1.
For small n, we need to set

P =

((k+`)/2
p/2

)2(n−k−`
ω−p

)(
n
ω

)
due to the disjoint split at the bottom level. For large n, we can assume that

((k+`)/2
p/2

)2
≈
(
k+`
p

)
and use (9.3). The ratio between the two binomials is quickly dropping to zero for increasing
n as we showed on the previous page.

Worst case complexity. For optimal parameters p ≈ 0.0064n, ` ≈ 0.0279n, the algorithm
runs in time

TMMT · P−1 = Õ
(
20.05363n

)
for the worst information rate R = k/n = 0.4639. The complexity is obtained as explained
in section 9.3. The individual cost are: B ≈ 20.0139n, CB ≈ L ≈ C ≈ 20.02146n with about
20.0322n iterations. Compared to the most efficient classical algorithm, ball-collision decoding,
that runs in time 20.05559n (section 9.3), we decrease the running time. The memory cost
increases however from 20.0148n to 20.0215n.
The worst-case complexity for full-distance decoding occurs for R = 0.44 where W =

0.13094. For optimal parameters p ≈ 0.0215n, ` ≈ 0.0753n, we obtain a running time of
about 20.1115n. The individual cost are: B ≈ 20.0376n, CB ≈ L ≈ C ≈ 20.0538n with about
20.0577n repetitions.
The results are obtained by the octave code in appendix B. We remark that depending

on the used optimization method and precision, the result may vary slightly. In comparison
to [MMT11], we find a slightly better worst case running time differing in the fifth decimal
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Chapter 10. Improved information-set decoding

position. We can reduce the memory requirement by choosing slightly larger r as we describe
in the following section.
The algorithm does not exploit the full potential of the representation technique. We

can allow a small proportion of intersections between I1 and I2. In this way, we augment
the number of representations and the degrees of freedom. Section10.2 describes our new
algorithm in detail.

Remark on the complexity notation. We aim to study and improve time and memory
requirements in the asymptotic case and hence apply two simplifications when analyzing the
complexity. While the actual complexity may be given as a sum of partial cost we can compute
the overall cost by the maximal term. We do also neglect polynomial and logarithmic factors
by use of the soft-O notation, denoted by Õ. It conceals constants as well as logarithmic
and polynomial factors in n. Logarithmic and polynomial factors appear in our algorithms
due to sorting, addition and storage of the elements as well when we need to repeat to create
the bottom lists. We also assume that 2 | k + `. The exponential factor in the complexity is
however unchanged if the assumption does not hold.
The presented complexity analysis provides thereby a comparison in the asymptotic case and

a theoretical recommendation for very large n. In practice, the polynomial and logarithmic
factors due to sorting, the number of lists, the storage of elements etc. have to be taken into
account and influence the memory cost and time consumption considerably.

10.1.2. Reducing the memory requirement under heuristic assumptions

May, Meurer and Thomae choose r to minimize the lists L1,L2 while still expecting to find
one representation on average: r ≈ log2(NMMT ). Let δ > 0 be a real parameter and define
∆ = 2δ which is exponential in n. We propose to add an additional constraint on the column
sums for the lists L1 and L2 in order to reduce their size. At each run, we pick one t′ ∈ Fδ2
and require that

(Qe1)[r+δ] =

[
t

t′

]
or

(Qe2)[r+δ] =

[
t

t′

]
+ s[r+δ] .

The probability that the corresponding column-sum to a representation matches the target
from Fr+δ2 is now 1/2r+δ. Under the heuristic assumption that the number of elements that
satisfy the conditions for all possible t′, we can expect that the lists are smaller by the factor
∆: L′ = L/∆. We expect to find C ′ = C/∆ collisions between L1 and L2. We repeat by
choosing the next target t′ until all ∆ possibilities are tried. Altogether we produce the same
number of collisions, C, as before but in blocks of heuristic size C ′. The price we have to pay
is that we need to create ∆ times the lists L1,L2 which costs T1 = ∆ ·max(B,C ′B, L

′) where
C ′B = CB/∆ ≈ L/∆. The overall cost are T = ∆ ·max(B,C ′B, L

′, C ′) = max(∆ ·B,CB, L, C).

As we wish to keep the overall time at its asymptotic minimum while minimizing L′, we
choose ∆ such that ∆ · B equals the maximum of the other terms in T which is given by L.
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10.2. Extended representation technique in the search phase

We hence choose ∆ = L/B which means that we reduce the lists L1,L2 by exactly the factor
that makes them larger than the bottom lists. The minimal memory requirement is given by
B and with the above technique all the lists are now of same size. We need 2 lists per level
in an implementation such that the memory is reduced from

2B + 2L to 4B .

We reevaluate the worst-case running time for half-distance decoding. With the above
method, all lists are of length 20.0139n. We need to repeat the creation of the lists ∆ ≈ 20.0075n

times. Heuristically, the asymptotic running time is unchanged at 20.05363n. Analogously, for
full-distance decoding all lists are of size 20.0376n and ∆ ≈ 20.0162n.

10.2. Extended representation technique in the search phase

We wish to solve the collision problem (10.1):∑
i∈I1

qi = s +
∑
i∈I2

qi .

In Stern’s algorithm both index sets I1, I2 are chosen in a disjoint fashion. Thus every
solution I only has a unique representation as the union of I1 and I2. MMT choose the sets
I1, I2 within the complete interval [1, k + `] but without intersections. Each column of the
solution set I is thus either in I1 or in I2. The number of ways to decompose I is given by
the possibilities to pick p/2 columns out of p:

NMMT =

(
p

p/2

)
.

We propose to choose |I1| = |I2| = p
2 + ε for some ε > 0 such that |I1∩ I2| = ε. So we allow

for ε columns qi that appear on both sides of the above equation. Thus every solution I is
written as the symmetric difference I = I1∆I2 := I1 ∪ I2 \ (I1 ∩ I2) where we cancel out all ε
elements in the intersection of I1 and I2 as illustrated in figure 10.2.

|I| = p

e

|I1| = p/2 + ε
e1

|I2| = p/2 + ε

ε

e2

Figure 10.2.: Decomposition of an index set I into two overlapping index sets.
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Chapter 10. Improved information-set decoding

If we allow ε columns to be in I1 and I2, the number of representations (I1, I2) increases
by the possibilities to choose ε additional columns. It is equal to

N =

(
p

p/2

)(
k + `− p

ε

)
. (10.8)

For random code instances the error vector e is sparse and p is small in comparison to
k + ` which means that N increases quickly for small choices of ε due to the second factor
in (10.8). An increased number of representations allows us to impose stronger constraints
on the colliding elements realized by a larger r for the r-bit target vector t. This in return
means we will need to create less elements resulting in smaller lists and a lower running time.
The next section describes a first algorithm that is suboptimal and shows that we need two
levels of representations to obtain a lower running time.

Comment aside. Consider the binary solution vector e that we represent as a sum of binary
vectors. This means that each one-entry is split into either 1+0 or 0+1 in the MMT-algorithm
presented in the previous section. Now, we also allow to split each zero-entry of e into either
0 + 0 or 1 + 1. Hence our benefit comes from using the equation 1 + 1 = 0 in F2 which gave
raise to the subtitle of our paper [BJMM12]: "Decoding Random Binary Linear Codes in
2n/20: How 1 + 1 = 0 Improves Information Set Decoding".

10.2.1. A first attempt - How to choose the number of levels

Suppose that the solution of weight p disperses its ones uniformly such that it has exactly
p/2 ones in the first and second half of [1, k + `]. Let ε be a parameter and split Q into two
sets of disjoint column sums: Q = [Q1|Q2] where Qi ∈ F`×(k+`)/2

2 .
We develop the same algorithm as done for the simple representation technique with the

difference that the weight of the intermediate vectors is p/2 + ε and p/4 + ε/e for the first
and second level. Figure 10.3 illustrates the algorithm.

y z y z

[Qe1]r = t [Qe2]r = s[r] + t

summation

Qe = s

B =
(

(k+`)/2
p/4+ε/2

)
T1 ← max(B, B·B

2r
, L)

E[L] =
( k+`
p/2+c)

2r

T2 ← max(L, L·L
2`−r

, NSol)

wt(p/2 + ε)/2

wt p/2 + ε

wt p

concatenation

Figure 10.3.: One level - suboptimal.
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10.2. Extended representation technique in the search phase

We start by creating two base lists of vectors of length k+ ` and weight p/4 + ε/2 and their
corresponding column sums. The lists are

B1 := {(z, Q1y) | y ∈ F(k+`)/2
2 , wt(y) =

p

4
+
ε

2
}

and
B2 := {(z, Q2z) | z ∈ F(k+`)/2

2 , wt(z) =
p

4
+
ε

2
}

which are of exact size B =
((k+`)/2
p/4+ε/2

)
. A call to a merge-join routine creates elements [y|z] of

exact weight p/2 + ε for which the column sum Q([y|z]) matches a target vector t or t + s[r]

for some randomly chosen target vector t ∈ Fr2. The elements are stored in lists L1 and L2,
respectively. So far this is a standard approach that concatenates vectors. The probability for
such a collision is 2−r for a uniform matrix Q. We expect that about CB = B2/2r elements
match each of the targets. The two lists we create, one for each target, are of expected size
L =

(
k+`
p+ε

)
2−r. We choose r such that we can expect to find one representation in the lists:

r ≈ log2(N). The running time of the collision search is T1 = max(B,CB, L). Note that for
well chosen ε > 0, we can hope to reduce T1.

A second collisions search then searches the solution as a vector that matches the target
s on all ` coordinates. The probability is 2r−` such that we expect to find C = L2/2`−r

colliding elements. We reject duplicates and all elements that have not weight p. The
cost in time are T2 = max(L,C,NSol) for the second merge. As NSol is necessarily smaller
than C, we can neglect it. The overall running time in the asymptotic case is hence
T = max(T1, T2) = max(B,CB, L, C).

Suppose that k/n = 0.7557 and ω = 0.04. Suppose that Q is uniform. We try to find
optimal parameters p, `, ε for a one-level extended representation technique algorithm as pre-
sented in the above paragraph that minimizes the running time. For optimal parameters, we
obtain the individual cost

B ≈ 20.0180n and CB = L = C ≈ 20.0281n .

The number of repetitions is about 20.0536n which leads to a running time T ≈ 20.0817n. We
see that the cost to create the lists L1 and L2, T1, is one dominating factor in the overall
running time. We can reduce the cost for creation of L1,L2 by building the elements in the
same way than e as a sum of vectors. The following section describes our new algorithm that
achieves a lower asymptotic running time than previous approaches. It has a second level in
which it applies the representation technique

10.2.2. Algorithm by extended representations technique

Our algorithm can be described as a computation tree of depth three, see figure 10.4 for an
illustration. We enumerate the levels from bottom to top where the third level is the initial
computation of disjoint base lists B1 and B2 and the zero level identifies the final output list
L that might contain the solution.

123



Chapter 10. Improved information-set decoding

. . .

Disjoint base lists Bi,1 and Bi,2 for i = 1, . . . , 4level 3

level 2

level 1

level 0

weight
p2
2

weight
p2 = p1

2 + ε2

weight
p1 = p

2 + ε1

weight
p

./ ./

./

r2 r2

r1L

L(1)
1 L(1)

2

L(2)
1 L(2)

2 L(2)
3 L(2)

4

Figure 10.4.: Illustration of the ColumnMatch algorithm using the extend. representation technique
at level one and two while the third layer is a disjoint composition of the elements.

We introduce parameters ε1 and ε2 representing the number of additional 1’s we allow on
the first and second level, respectively. At each representation level, we impose a bit constraint
of ri bits, i = 1, 2, where 0 ≤ r2 ≤ r1 ≤ `. In the following description, we equip every object
with an upper index that indicates its computation level, e.g., a list L(2)

j is contained in the
second level.

On the first level, we search for index sets I(1)
1 and I

(1)
2 in [k + `] of size p1 := p

2 + ε1

which intersect in exactly ε1 coordinates such that I = I
(1)
1 ∆I

(1)
2 . In other words, we create

lists of binary vectors e
(1)
1 and e

(1)
2 of weight p1 and search for tuples (e

(1)
1 , e

(1)
2 ) such that

wt(e
(1)
1 + e

(1)
2 ) = p and Q(e

(1)
1 + e

(1)
2 ) = s. Note that the number of tuples (e

(1)
1 , e

(1)
2 ) that

represent a single solution vector e is

R1(p, `; ε1) :=

(
p
p
2

)(
k + l − p

ε1

)
(10.9)

as we derived in (10.8). To optimize the running time, we impose a constraint on r1 ≈ log2R1

coordinates of the corresponding vectors Qe
(1)
i such that we can still expect to find one

representation of the desired solution e. This is analogous to what we explained in section 10.1
for the simple representation technique. The bit-constraint on the column sums allows us to
reduce the size of the lists L(1))

j by restricting the vectors e
(1)
i to those where Qe

(1)
i equals

some target vector. More precisely, the algorithm proceeds as follows. We first fix a random
vector t(1)

1 ∈R Fr12 , set t(1)
2 := s[r1] + t

(1)
2 and compute two lists

L(1)
i = {ei(1) ∈ Fk+`

2 | wt(ei) = p1 and (Qe
(1)
i )[r1] = t

(1)
i } for i = 1, 2.
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10.2. Extended representation technique in the search phase

Observe that any two elements e
(1)
i ∈ L(1)

i , i = 1, 2, already fulfill by construction the
equation (Q(e

(1)
1 +e

(1)
2 ))[r1] = s[r1], i.e. they already match the syndrome s on r1 coordinates.

In order to solve the SMP, we are interested in a solution e = e
(1)
1 + e

(1)
2 that matches the

syndrome s on all ` positions and has weight exactly p. Once L(1)
1 and L(1)

2 have been created,
this can be accomplished by calling the Merge-Join-Decode algorithm from section 1.2 on
input L(1)

1 ,L(1)
2 with target s, weight p and parameter `.

It remains to show how to construct L(1)
1 and L(1)

2 from the lists at the second level.
We represent e(1)

i as a sum of two overlapping vectors e(2)
2i−1, e

(2)
2i both of weight p2 := p1

2 +ε2,
i.e. we require the two vectors to intersect in exactly ε2 coordinates. Altogether, the solution
e is now decomposed as

e = e
(1)
1 + e

(1)
2 = e

(2)
1 + e

(2)
2 + e

(2)
3 + e

(2)
4 .

Clearly, there are

R2(p, `; ε1, ε2) =

(
p1

p1/2

)
·
(
k + `− p1

ε2

)
many representations for e

(1)
j where p1 = p

2 + ε1. Similarly to the first level, this allows us

to fix r2 ≈ logR2 coordinates of the partial sums Qe
(2)
i to some target values t

(2)
i . More

precisely, we draw two target vectors t
(2)
1 , t

(2)
3 ∈ Fr22 , set t(2)

2j = (t
(1)
j )[r2] + t

(2)
2j−1 for j = 1, 2,

and compute four lists

L(2)
i = {e(2)

i ∈ Fk+l
2 | wt(e

(2)
i ) = p2 and (Qe

(2)
i )[r2] = t

(2)
i } for i = 1, . . . , 4.

Notice that by construction all combinations of two elements from either L(2)
1 ,L(2)

2 or L(2)
3 ,L(2)

4

match their respective target vector t(1)
j on r2 coordinates.

How to create the lists L(2)
1 , . . . ,L(2)

4 at the second level.

We exemplary explain how to create L(2)
1 . The remaining lists can be constructed analogously.

We apply a classical meet-in-the-middle collision search. We decompose e
(2)
1 as e(2)

1 = y + z

by two non-overlapping vectors y and z of length k + `. To be more precise, we first choose
a random partition of [k + `] into two equal sized sets P1 and P2, i.e. [k + `] = P1 ∪ P2 with
|P1| = |P2| = k+`

2 , and force y to have its p2
2 1-entries in P1 and z to have its p2

2 1-entries in
P2. That is we construct two base lists

B1 := {y ∈ Fk+`
2 | wt(y) =

p2

2
and yi = 0∀i ∈ P2}

and
B2 := {z ∈ Fk+`

2 | wt(z) =
p2

2
and zi = 0∀i ∈ P1}.

We invoke Merge-Join-Decode to compute

L(2)
1 = Merge-Join-Decode (B1,B2, r2, p2, t

(2)
1 ) .
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Let S3 = |B1| = |B2| denote the size of the base lists and let C3 be the total number of
matched vectors that occur in Merge-Join-Decode (since the splitting is disjoint, neither
duplicates nor inconsistencies can arise). Then Merge-Join-Decode needs time

T3(p, `; ε1, ε2) = Õ (max {S3, C3}) .

Clearly, we have

S3 := S3(p, `; ε1, ε2) =

(
(k + `)/2

p2/2

)
.

Assuming uniformly distributed partial sums we obtain

E [C3] =
S2

3

2r2
.

For a unlucky pick of the partition P1, P2, the solution will be missed as only a representation
can be found that spreads its ones exactly equally over the two sets. Decomposing e

(2)
1 into

x and y from disjoint sets P1 and P2 hence introduces a probability of loosing the vector e(2)
1

and hence the solution e = e
(2)
1 + e

(2)
2 + e

(2)
3 + e

(2)
4 . For a randomly chosen partition P1, P2,

the probability that one representation (e
(2)
1 , e

(2)
2 ) equally distributes its 1-entries over P1 and

P2 is given by (10.7):

PB =

((k+`)/2
p2/2

)2(
k+`
p2

)
which is asymptotically inverse-polynomial in n

PB = O
(

1√
n

)
(see section 10.1.1).

Choosing independent partitions1 Pi,1, Pi,2 and creating corresponding base lists Bi,1,Bi,2
for all four lists L(2)

i , we can guarantee independent splitting conditions for all the e
(2)
i . This

yields a total splitting probability of PSplit = (PB)4 which is still inverse-polynomial in n.
Repeating polynomial many times the choice of the partitions, the probability of success
goes exponentially to one. The asymptotic running time which is exponential is not increased.

After having created the lists L(2)
i , i = 1, . . . , 4 on the second level, two more applications of

the MergeJoin algorithm suffice to compute the lists L(1)
j on the first level. Eventually, a last

application of MergeJoin yields L, whose entries are solutions to the SMP. See algorithm 10.1
for a complete pseudocode description.

1The choice of independent partitions at the bottom level was suggested by Daniel Bernstein.
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Algorithm 10.1: ColumnMatch – Submatrix matching algorithm
Input: Q ∈ F`×k+`

2 , s ∈ F`2, p ≤ k + `
Output: List L of vectors in e ∈ Fk+`

2 with wt(e) = p and Qe = s
Parameters: Choose optimal ε1, ε2 and set p1 = p/2 + ε1 and p2 = p1/2 + ε2.

Choose random partitions Pi,1, Pi,2 of [k + `].
Create the base lists Bi,1 and Bi,2.
Repeat

Choose a target t(1)
1 ∈R Fr12 and set t(1)

2 = s[r1] + t
(1)
1 .

Choose t
(2)
1 , t

(2)
3 ∈R Fr22 .

Set t(2)
2 = (t

(1)
1 )[r2] + t

(2)
1 and t

(2)
4 = (t

(1)
2 )[r2] + t

(2)
3 .

List L(2)
i ←Merge-Join-Decode (Bi,1,Bi,2, r2, p2, t

(2)
i ) for i = 1, . . . , 4.

List L(1)
i ←Merge-Join-Decode (L(2)

2i−1,L
(2)
2i , r1, p1, t

(1)
i ) for i = 1, 2.

List L ←Merge-Join-Decode (L(1)
1 ,L(1)

2 , `, p, s).
Output L.

10.2.3. Complexity analysis

We estimate the complexity of ColumnMatch as a function of the parameters (p, `; ε1, ε2),
where (ε1, ε2) are optimization parameters. Notice that the values ri and pi are fully deter-
mined by (p, `; ε1, ε2). The base lists B1 and B2 are of size S3(p, `; ε1, ε2) as defined above.

The three consecutive calls to the merge-join routine create lists L(2)
j of size S2(p, `; ε1, ε2),

the lists L(1)
j of size S1(p, `; ε1, ε2) and the final list L (which has not to be stored). More

precisely, we obtain

Si(p, `; ε1, ε2) = E
[
|L(i)
j |
]

=

(
k + `

pi

)
· 2−ri for i = 1, 2.

Here we assume uniformly distributed partial sums Qe
(j)
i . This permits us to assume that

the bit-constraints are satisfied with probability 2−ri .

Let Ci for i = 1, 2, 3 denote the number of all matching vectors (including possible inconsis-
tencies or duplicates) that occur in the three Merge-Join steps. If we set r3 = 0 and r0 = `,
then

E [Ci] = S2
i · 2ri−ri−1 .

Following the analysis of Merge-Join in section 1.2, the time Ti of the three Merge-Join
steps is given by

Ti(p, `; ε1, ε2) = max {Si, Ci} .
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The overall time and space complexity is thus given by

T (p, `; ε1, ε2) = max {T3, T2, T1} (10.10)

and
S(p, `; ε1, ε2) = max {S3, S2, S1} .

We remark that the above estimates work well in practice. Heuristically, we can assume
that the Ci achieve their expected values up to a constant factor and that the number of
remaining elements in the lists is close to the expected value (compare to experimental results
in section 10.5).
Since our heuristic analysis also relies on the fact that projected partial sums of the form

(Qe)[r] yield uniformly distributed vectors in Fr2, a more precise theoretical analysis needs to
take care of a certain class of malformed input parity check matrices H. We show how to
obtain a provable variant of our algorithm that works for all but a negligible amount of input
matrices H in section 10.7. The provable variant aborts the computation if the observed Ci or
Si differ too much from their expectation which happens for an exponentially small fraction
of input matrices.

Worst-case complexity

As we wish to minimize the running time, we need to minimize T (p, `; ε1, ε2) by choosing
optimal parameters p, `, ε1 and ε2 for a given decoding problem in an [n, k, d]-code.
For a fixed code rateR := k/n, we need to optimize the parameters2 such that the expression

T (p, `; ε1, ε2) · P(p, `)−1 (10.11)

is minimized under the natural constraints

0 <` < min{n− k, n− k − ω − p}
0 <p < min{ω, k + `}
0 <ε1 < k + `− p
0 <ε2 < k + `− p1

0 <R2(p, `; ε1, ε2) < R1(p, `; ε1, ε2) < ` .

The time per iteration T is given by (10.10) and the number of iterations P−1 equals((
k+`
p

)(
n−k−`
ω−p

)
/
(
n
ω

))−1
as given in (9.3). To be more precise, we need to set

P =

((k+`)/2
p/2

)2(n−k−`
ω−p

)(
n
ω

)
due to the disjoint split at the bottom level. For large n, we can assume that

((k+`)/2
p/2

)2
≈
(
k+`
p

)
and use (9.3).

2e.g., Octave or Mathematica
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Using the approximation
(
αn
βn

)
= 2αh(β/α)n+o(n) (section A.2 in the appendix) we can express

T in terms of n, k/n, d/n, p/n, `/n, ε1/n and ε2/n. For large n and random linear codes,
we can even relate R := k/n and D := d/n by the Gilbert-Varshamov bound (section 8.1).
Thus asymptotically we obtain D = h−1(1 − R) + o(1) for a given R where h is the binary
entropy function. In this way, we can express all cost in terms of n and k/n and obtain
T (p, `; ε1, ε2) ≈ 2F (R)n as explained in section 9.3 where F (R) is determined by the used
algorithm. We obtain the following numerical results by use of the octave code in appendix B.

Worst-case complexity. For bounded-distance decoding, we set W := ω/n = D/2. We
numerically determine the best parameters for equidistant information rates and obtain the
worst asymptotic time complexity forR = 0.4575 whereW = 0.062311. Remark that the same
running time is obtained for information rates nearby R ∈ {0.4574, 0.4575, 0.45795, 0.45805}.
We picked the value that results in the lowest memory requirement. For parameters

p ≈ 0.0141n, ` ≈ 0.0737n, ε1 ≈ 0.0033n and ε2 ≈ 0.0002n ,

we obtain the individual cost

S3 ≈ 20.02162n, S2 ≈ 20.0307n, S1 ≈ 20.0306n ,

C3 ≈ C2 ≈ C1 ≈ 20.0307n .

Due to about 20.0186n repetitions, the overall running time becomes 20.04933n using 20.0307n

space. The exactness of the result depends clearly on the numerical method and the precision
of all parameters, especially the one when calculating D. We used the nelder-mead function of
octave and the code B.3 as presented in the appendix. The worst complexity for full-distance
decoding occurs for R = 0.44100 and W = 0.13057. For parameters

p ≈ 0.0546, ` ≈ 0.2075n, ε1 ≈ 0.0106n and ε2 ≈ 0.0015n ,

we obtain the individual cost

S3 ≈ 20.0656n, S2 ≈ 20.0778n, S1 ≈ 20.0771n ,

C3 ≈ C2 ≈ C1 ≈ 20.0778n .

Due to about 20.024n repetitions, the overall running time is 20.1018n using 20.0778n space.

10.2.4. Reducing the memory requirement under heuristic assumptions

Similar to the improvement in section 10.1.2, we can allow larger restrictions and trade time
for memory. If we choose the size of the restriction with care, we can obtain an algorithm of
same asymptotic running time and reduced memory requirement.
We start with the lists at the first level and increase the constraints per run to: r1 + δ1

for real parameter δ1 ≥ 0. The parameter is not completely free as we require a same overall
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running time. Remember that we have a fixed target on r1 bits and that we iterate over all
possible δ1-bit vectors t′. We assume that the additional constraint is satisfied for about the
same number of vectors for varying t′. Let ∆1 = 2δ1 . Per iteration, we search the solution
within the collisions between two lists of expected size S′1 ≈ S1

∆1
. This reduces the expected

number of collisions by a factor ∆1. We repeat ∆1 times with changed target to produce all
C1 collisions than before. Let Ti denote the time to create the lists of level i. The expected
time to find the solution can then be computed as

T0 = ∆1 ·max(
C1

∆1
, T1)

where
∆1 · T1 = ∆1 ·max(

S1

∆1
,
C2

∆1
, T2) = max(S1, C2,∆1 · T2) .

The memory in the first level is now reduced but the overall memory requirement is still
determined by the lists at the second level, we apply the same idea again. Increasing the
constraints to r2 + δ2 for a real factor δ2 ≥ 0, reduces the expected size of the lists to
S′2 = S2/∆2 where ∆2 = 2δ2 . Now, we can expect to find only C2/∆2 collisions for the lists
in the level above. However, if we repeatedly create lists of size S′2 with changed target on δ2

bits, we can expect to create S1 elements in the upper level after ∆2 iterations. The time to
create all lists of level two of size S2 is given by the time to construct ∆2 times lists of size
S′2:

T2 = ∆2 ·max(
S2

∆2
,
C3

∆2
, S3) = max(S2, C3,∆2 · S3) .

Heuristically, the memory requirement is

max(S3,
S2

∆2
,
S1

∆1
) .

We now determine the optimal size of δi. The running time is unchanged if T0 = T from (10.10
on page 128 ), that is, if

T0 = max(C1, S1, C2,∆1 · S2,∆1 · C3,∆1 ·∆2 · S3)

equals
T ≈ S2 ≈ C2 ≈ C1 .

As S2 is already dominating the time, we can only choose δ1 = 0 and thus not reduce the lists
at the first level. We can however reduce the lists at the second level by a maximal factor
∆2 = S3/R2 such that the lists at the bottom and middle level are of same length.

Using two lists per level, we drop the number of stored elements from

2S1 + 2S2 + 2S3 to 2S1 + 4S3

where S2 is larger than S3 by the factor ∆2 which is exponential in n.
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For half-distance decoding in the worst case, the overall asymptotic memory requirement
is almost unchanged at 20.0306n = Õ (S1) which is very close to the previous maximum
S2 ≈ 20.0307n. The number of inner repetitions is ∆2 ≈ 20.0091n.

In the case of full-distance decoding, the asymptotic memory requirement is about
20.0771n = Õ (S1) in comparison to the previous maximum S2 ≈ 20.0778n. The number of
inner repetitions is ∆2 ≈ 20.0122n.

10.3. Comparison of asymptotic complexity

We now show that we improve the running time of information-set decoding by an exponential
factor in comparison to the latest results presented in 2011 [BLP11, MMT11].
The comparison to other algorithms is based on the complexity coefficient F (R) as explained

in section 9.3. We express the running time as

T (n,R) = 2nF (R)+o(n) ≤ 2ndF (R)eρ

for large enough n. The coefficient F (R) is computed in the worst-case complexity, for the
information rate R that maximizes F (R). For random linear codes, we can relate R = k/n

and D = d/n via the Gilbert-Varshamov bound. Thus asymptotically we obtain D = h−1(1−
R)+o(1) for a given R where h is the binary entropy function. For bounded-distance decoding,
we set W := ω/n = D/2. We numerically determined the optimal parameters for several
equidistant rates R and interpolated F (R). The results are shown in figure 10.5.

0.2 0.4 0.6 0.8 1.0
R=k�n
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0.04

0.05

FHRL

Figure 10.5.: Comparison of F (R) for code rates 0 < R < 1 for bounded-distance decoding. Our
algorithm is represented by the thick curve, MMT is the thin curve and Ball-collision is the dashed
curve.
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For full-distance decoding, we need to find a closest codeword at maximal distance W =

D = h−1(1− R). Doing the same numerical optimization as described before, we obtain the
curve for F (R) as shown in figure 10.6. We see that the worst case appears for almost same
information rates in all three algorithms (around 0.46 for half-distance decoding and around
0.42 for full-distance decoding).
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R=k�n
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Figure 10.6.: Complexity coefficient F (R) for full-distance decoding. Our algorithm is represented
by the thick curve, MMT is the thin curve and Ball-collision is the dashed curve.

We take a closer look at the worst-case complexities of decoding algorithms for random linear
codes. Table 10.1 compares the classical techniques used for information-set decoding with
the algorithms based on the representation technique for a worst-case information rate. We
already saw the complexity for the algorithms by Lee-Brickel, Stern, Ball-collision and MMT
in the introduction to ISD (section 9.3, table 9.1). Comparing the time coefficient in the
exponential, we see that our ISD algorithm from section 10.2.2 that uses the extended repre-
sentation technique has a significantly lower running time (1st and 4th column). The price
we need to pay is an augmented memory requirement (3rd and 5th column).

Algorithm half-dist. full dec.
time space time space sect.

Lee-Brickell 0.05752 - 0.1208 - 9.1
Stern 0.05563 0.0134 0.1166 0.0318 9.1
Ball-collision 0.05559 0.0148 0.1164 0.0374 9.1
MMT 0.05363 0.0215 0.1115 0.0538 10.1
Heurist. MMT 0.05363 0.0139 0.1115 0.0376 10.1.2
New algorithm 0.04933 0.0307 0.1018 0.0778 10.2
Heurist. new algorithm 0.04933 0.0306 0.1018 0.0771 10.2.4

Table 10.1.: Comparison of worst-case complexity coefficients, i.e., the time columns represent the
maximal complexity coefficient F (R) for 0 < R < 1.
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Fixing the available memory to at most 20.0317n for all algorithms, we can still see an
amelioration in the time coefficient: We can easily restrict Ball-collision, MMT and our new
algorithm to the space complexity coefficient 0.0317 which is the rounded space requirement
of Stern’s algorithm (b0.03176c, for k ≈ 0.446784). In this case, we obtain time complex-
ities Fball(R) = 0.1163, FMMT(R) = 0.1129 and Four(R) = 0.1110, which shows that our
improvement is not a pure time memory trade-off.

10.4. Predicted merge-join

The large number of collisions that occur when merging lists in intermediate levels dominates
the running time. We require that the colliding elements do intersect at few positions such
that the weight of the combined element is smaller than the sum of the weights of the starting
elements.
More precisely, we are given two binary vectors e1, e2 of length m and weight p′ = p/2 + ε.

The probability that they intersect in exactly ε positions such that their sum e1 + e2 has
weight p is:

P =

(
m−p′
p′−ε

)(
p′

ε

)(
m
p′

) .

For practical parameters, the probability is small such that a lot of colliding elements are
inconsistent with respect to the weight constraint and will be discarded. In order to avoid
these unnecessary cost, we propose to perform a preprocessing of the lists that sorts the
elements according to the positions of non-zero elements. The merge-join is then performed
only on sets of elements that have a specified number of ones at the same position. It may
only happen that they intersect on additional positions. The running time can decrease in
this way at the cost of a higher space requirement.
We aim at constructing a list L(1) of L(1) elements e1 + e2 ∈ Fm2 each of weight p such that

Q(e1 + e2)[`] = t ∈ F`2. The elements are obtained by merging two lists L(2)
1 and L(2)

2 that
contain vectors e1 ∈ Fm2 and e2 ∈ Fm2 , respectively, of weight p′ = p

2 + ε. We also know that
Q(e1 + e2)[r] = t where r ≤ `.

The presorting can be realized as follows: To every vector e1 and e we associate a set
of labels L(e1) and L(e2). Every label represents a selection of ε indices corresponding to
non-zero coordinates of e1 or e2, respectively. For example, let ε = 2 and e1 = (1, 1, 1, 0, 0, 0),
then L(e1) = {(1, 1), (1, 3), (2, 3)}. Every vector matches exactly

(
p′

ε

)
labels. When searching

consistent collisions for a fixed given vector e1 with label set L(e1), it now suffices to consider
only vectors e2 that have at least one label in common.
For L(2)

1 we create
(
m
ε

)
different boxes B1

l , one box for every possible label l. The same is
done for L(2)

2 and boxes B2
l . We insert copies of every vector ei into the boxes Bil for all its

labels l ∈ L(ei). We denote the resulting larger lists by L?i and there size by L?i . Now, all
consistent collisions can be found by simply merging boxes of same label. This process can
be seen as predicting the ε positions in which two vectors e1 and e2 intersect. The whole
procedure can be written in pseudo-code as algorithm 10.2.
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Algorithm 10.2: Predicted Merge-Join

Input: L(2)
1 ,L(2)

2 , p, t ∈ F`2
Output: L(1) = L(2)

1 ./ L(2)
2

Set collision counter C? ← 0
. Presort L?i :
For each ei ∈ L(2)

i

Copy ei into box Bil for all l ∈ L(ei)
. Search collisions using Alg. 1.2:
For each Label l

(T , tmpC)←Merge-Join (B1
l ,B2

l , `, p, t)
L? ← L? ∪ T (i.e. filter out duplicates)
C? ← C? + tmpC

The running time of such a Predicted Merge-Join is

T ?i = Õ (max {L?1, L?2, C?})

where L(1) can be omitted since L(1) ≤ C?. It remains to determine the expected values for
L?i and C?. Since every element ei is copied

(
p
ε

)
times, we obtain

L?i = |Li| ·
(
p

ε

)
.

Moreover, we expect the ei to distribute equally over the boxes Bil which yields

E
[
|Bil |
]

=
L?i(
m
ε

) .

For a fixed label l, it holds

E [tmpC] =
E
[
|B1
l |
]
E
[
|B2
l |
]

2`−r
=

L?1 · L?2(
m
ε

)2 · 2`−r
according to the analysis of the merge-join algorithm in section 1. This implies

E [C] = #labels · E [tmpC] =
L?1 · L?2(
m
ε

)
· 2`−r

.

In summary, we see that the above described Predicted Merge-Join allows to reduce the
number of collisions at the cost of expanding the lists to L?j . Replacing a standard merge-join is
of use for parameters (p,m, ε, `, r) where the the expected number of collisions is significantly
larger than the expected number of returned elements. This is the case if the vectors are
sparse such that an intersection is rare. For a given parameter set, we can easily check whether
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T ∗i < Ti holds in which case we use a predicted merge-join. The Predicted Merge-Join
has no impact on the asymptotic analysis.

10.5. Implementation for McEliece parameters [1024, 524, 50]

To show the practicability of the extended representation technique to solve the SMP, we
have implemented the algorithm ColumnMatch (algorithm 10.1) and solved the SMP for
the original McEliece [Jor83, McE78] parameters [n, k, ω] = [1024, 524, 50].

An optimization of the parameters p, `, ε1 and ε2 by using the exact formulas of sec-
tion 10.2.3 leads to p = 8, l = 46, ε1 = 2, ε2 = 1 which implies p1 = 6, p2 = 4 and p3 = 2

and allows for an easy implementation since we obtain lists of same length within each level.
We set restrictions of r1 = 23 bits and r2 = 13 bits at the intermediate and last level, respec-
tively. This choice guarantees a good chance of success, over 50% per random target triple
(t

(1)
1 , t

(2)
1 , t

(2)
3 ), reducing the size of the intermediate lists at the same time.

According to the analysis in section 10.2.3, we can expect to have about

C2 ≈ S2
2 · 2r2−r1 ≈ 228.04

colliding elements in level two where

S2 ≈
(
k + `

p2

)
· 2−r2 ≈ 219.02

They are reduced to about

S1 ≈
(
k + `

p1

)
· 2−r1 ≈ 222.40

elements as we create duplicates or colliding element that do not comply to the weight con-
straint. The probability that the sum of two colliding vectors from level two has the correct
weight is

P2 =

(
k+`−p2
p2−ε2

)(
p2
ε2

)(
k+`
p2

) = 2.76% .

So we can already estimate that only about 2.76% · C2 ≈ 222 collisions are of value. We
additionally exclude all that are duplicates or have too small weight (very few).
These observations motivate the use of a Predicted Merge-Join in the second level as
introduced in section 10.4. The algorithm reduces the number of collisions we need to treat
at the cost of slightly increased lists at the second level. We denote the size of the lists by
S?2 and the number of collisions by C?2 to distinguish them from the values observed by a
standard Merge-Join-Decode .
We run the algorithm3 on 1000 randomly chosen SMP instances for one random set of

target values per instance. For a choice of r1 = 23 and r2 = 13, we can solve 504 instances in
20.49 minutes using 430 MB of memory.

3 Intel R© CoreTM i7-2820QM CPU at 2.3GHz
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Using the Predicted Merge-Join algorithm, the average number of colliding elements in
the experiments is C?2 ≈ 7 615 276 ≈ 222.86 which is close to the average number of consistent
elements, S1 ≈ 4 696 298 ≈ 222.16, we observed. The loss is mainly due to duplicates. The lists
in the level below are augmented by a factor

(
p2
ε2

)
in comparison to a simple merge-join. We

observe an average number of S?2 ≈ 2 125 074 ≈ 221.02 elements at the second level. Table 10.2
lists further details about the number of elements. It gives the minimal and maximal values
as well as the standard deviation.

Table 10.2.: Experimental number of intermediate elements for 1000 random instances with param-
eters: [n, k, ω] = [1024, 524, 50], p = 8, l = 46, ε1 = 2, ε2 = 1, r1 = 23 and r2 = 13.

List type Min. size Max. size Mean Standard
deviation

Theoretical
estimate

S?2 2 115 812 2 136 036 2 125 074 2 903 2 111 739

C?2 7 557 815 7 668 618 7 615 276 24 150 7 719 093

S1 4 602 869 4 791 863 4 696 298 15 375 5 534 417

The complexity analysis of Predicted Merge-Join and our ColumnMatch estimates
that

S?2 ≈ S2 ·
(
p2

ε2

)
≈ 221.01 ≈ 2 111 739

elements appear in the second level per list and that we observe

C?2 ≈
(S?2)2(

k+`
ε2

)
· 2r2−r1

≈ 222.88 ≈ 7 719 093

collisions when we merge two of the lists. We expect to collect about

S1 ≈
(
k + `

p2

)
· 2−r1 ≈ 222.40 ≈ 5 534 417

elements per list in level one. The estimates are close to the experimental values for S?2 and
C?2 . The theoretical value for S1 counts the number of vectors of length k + ` and weight p1

that comply to a constraint on r1 bits. This is a simple estimate that neglects completely how
we create the vectors. We expect to find less elements as they are constructed from vectors
at the lower level that need to comply to weight and bit-constraints. The actual number of
elements is smaller by a factor 0.85. As we solve about 50% of the instances, we can run them
a second time with changed random targets. We achieve to solve 765 instances multiplying
the time by 1.5.
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Augmenting the constraints. In a second experiment, we slightly increase the restrictions
as we proposed in section 10.2.4 and choose r2 = 14. We expect to find solutions for 25%

of the cases on average as we add an additional constraint of one bit on the elements in the
second level.

For 1000 instances, we achieve to solve 257 in 10.27 minutes using 220 MB of memory, that
is, we find only 26% of the index sets but reduce the time by one half due to the smaller lists.
The memory requirement is at 51%.

The average number of colliding elements in the experiments is C?2 ≈ 3 806 860 ≈ 221.86

which is again close to the average number of consistent elements, S1 ≈ 2 863 550 ≈ 221.45.
We observe an average number of S?2 ≈ 1 062 488 ≈ 220.02 elements at the second level.
Table 10.3 lists further details and shows that the experimental values for S?2 and C?2 match
the estimates. The theoretical bound for S1 differs from the experimental value by a factor
one half. This is due to the simplified formula for S1 as explained above. As we augment the
constraints at the lower level, even less elements are found for level one.

Table 10.3.: Experimental number of intermediate elements for 1000 random instances with param-
eters: [n, k, ω] = [1024, 524, 50], p = 8, l = 46, ε1 = 2, ε2 = 1, r1 = 23 and r2 = 14.

List type Min. size Max. size Mean Standard
deviation

Theoretical
estimate

S?2 1 057 528 1 067 872 1 062 488 1 967 1 055 869

C?2 3 781 376 3 833 337 3 806 860 9 911 3 859 546

S1 2 813 372 2 912 795 2 863 550 16 810 5 534 417

We can repeat the search of a solution for the unsolved instances, about 75%, by choosing
new independent random targets. The running time is multiplied by 13

4 and we solve 456
instances which is roughly 46%.

A different approach is a dependent choice of targets for the unsolved instances. We can
run each instance first for randomly picked targets (t

(2)
1 , t

(2)
3 ) of r2 = 14 bits in level two. If

we do not solve the problem, we change (only) the targets at the second level by flipping the
last bit in t

(2)
1 or t(2)

3 , denoted by t
′(2)
j . We need to perform four merge-joins for lists w.r.t the

targets (t
(2)
1 , t

(2)
3 ), (t

(2)
1 , t

′(2)
3 ), (t

′(2)
1 , t

(2)
3 ) and (t

′(2)
1 , t

′(2)
3 ). We hence solve the same instances

as for same targets where we impose no constraint on the 14th coordinate. We thus are back
to the experiment above where r2 = 13. This time, we only need about 220 MB at each run.
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10.6. Upper bounds on bad matrices, length of lists and
number of collisions

The algorithm of section 10 fails to find a solution with the claimed complexity if we are
unlucky to pick good targets such that no or too many collisions appear at same point. The
section theoretically bounds the risk. We provide bounds on the number of matrices which
produce few different column sums such that we need to repeat the choice of the target many
times. The second and third part estimates the number of matrices for which many targets
lead to lists of length above the expected value or to too many collisions. In these cases, the
memory or time is highly above the average case.
We make use of the following helpful theorem that can be obtained by a straightforward

modification of the result in [NSS01, Theorem 3.2] (compare to section 4.1).

Theorem 10.1
For a fixed matrix Q ∈ Fm×n2 , a target vector t ∈ Fm2 and an arbitrary set B ⊂ Fn2 , we define

PQ(B, t) :=
1

|B|
|{x ∈ B : Qx = t}| .

Then for all B ⊂ Fn2 it holds that

1

2mn

∑
Q∈Fm×n2

∑
t∈Fm2

(PQ(B, t)− 1

2m
)2 =

2m − 1

2m|B|
.

The following deductions are very similar to what we already saw in the integer case in
section 4.1.

10.6.1. Bad distribution of column sums for few matrices

Theorem 10.1 states that for matrix Q ∈ Fm×n2 and a target vector t ∈ Fm2 there are |B|/2m
values x ∈ B on average such that Qx = t. The set B is the set of binary vectors of length
n. Let λ be a positive integer. We bound the number of matrices, denotes by Fλ, for which
less than 2m/λ targets can be obtained as a column sum. If our algorithm receives such a
matrix as input, it will succeed only on a small fraction of targets which in return augments
the running time. From theorem 10.1 we derive that

F (λ)
∑
t∈Fm2

(
PQ(B, t)− 1

2m

)2

≤ 2m − 1

2m|B|
2mn . (10.12)

We can lower bound the sum using the following observations. We abbreviate Pt = PQ(B, t).
Denote by N0 the number of of targets that are missed, i.e., for which Pt = 0.
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By our assumption, we know that N0 = 2m (λ−1)
λ . We compute:

∑
t∈Fm2

(
Pt −

1

2m

)2

=
∑

t∈Fm2 ,Pt 6=0

(
Pt −

1

2m

)2

+
N0

22m

=
∑

t∈Fm2 ,Pt 6=0

(
P 2
t −

2Pt

2m

)
+

2m −N0

22m
+

N0

22m

=
∑

t∈Fm2 ,Pt 6=0

P 2
t −

2

2m

∑
t∈Fm2 Pt 6=0

Pt︸ ︷︷ ︸
1

+
1

2m

=
∑

t∈Fm2 ,Pt 6=0

P 2
t −

1

2m
.

As
∑

t∈Fm2 ,Pt 6=0 PR = 1, we have that
∑

t∈Fm2 ,Pt 6=0 P
2
t ≥ 2m/λ · (λ/2m)2 = λ/2m such that

∑
t∈Fm2

(
Pt −

1

2m

)2

≥ λ− 1

2m
.

We can now estimate Fλ by combining the results:

Fλ ≤
2m − 1

(λ− 1)|B|
2mn ≤ 1

(λ− 1)
2mn (10.13)

if we choose m such that |B| ≥ 2m − 1. The fraction becomes arbitrarily small choosing m
such that 2m is slightly smaller than |B| and λ large enough.

10.6.2. Bound on the size of the lists

We give an upper bound on the number of matrices that lead to an overflow in the lists for
many targets which allows us to estimate the size of the lists. Let λ > 0 be a parameter.
Consider the number of matrices, Hλ, for which more than 2m/(2λ) targets have a probability

P (Q, t) ≥ λ

2m
.

Due to theorem 10.1, we can say that

2mn
2m − 1

2m|B|
≥ Hλ

∑
t∈Fm2

(
P (B, t)− 1

2m

)2

≥ Hλ
2m

2λ

(λ− 1)

2m

2

=
Hλ

2m
(λ− 1)2

2λ
.

We obtain that
Hλ ≤ 2mn

2m − 1

2m
2m

|B|
2λ

(λ− 1)2
≤ 2mn

2λ

(λ− 1)2
(10.14)
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for m chosen such that 2m ≤ |B|. The fraction can become arbitrarily small depending on the
choice for λ.
We conclude that for a matrix which is not one out of the Hλ matrices above and for most

targets (all but at most 2m/(2λ)), the size of the lists L(i)
j is at most λ times the expected

value |B|/2m:

L(i) ≤ λ |B|
2m

.

10.6.3. Bounding the number of collisions

The input to a merge-join routine is a matrix Q ∈ Fm×n2 , a target t′ ∈ Fm2 and two lists of
elements e1, e2 ∈ B such that the corresponding column sums are: Qe1 = tL and Qe2 = tR
for some tR, tL ∈ Fm2 . We call an element (e1, e2) ∈ B×B a collision if the target is matched:
Q(e1 + e2) = t. By construction, we have that the the target is matched on some r ≤ m

coordinates: (tL + tR)[r] = t[r]. The number of collisions can be computed as

C =
∑

t∈Fm2 ,t[r]=t′

|B|PQ(B, t) · |B|PQ(B, t + t′[r])

and upper bounded as

C ≤
√ ∑

t∈Fm2 ,t[r]=tL

(|B|PQ(B, t))2 ·
∑

t∈Fm2 ,t[r]=tR

(|B|PQ(B, t))2 .

For a parameter λ, let Gλ be the number of matrices for which the number of collisions exceeds
the expected value. More precisely, for which more than 2r/(8λ) targets satisfy:

∑
t∈Fm2 ,t[r]=t′

PQ(B, t)2 ≥
(
λ

2r

)2

2r−m .

From theorem 10.1, we derive that∑
Q∈Fm×n2

∑
t∈Fm2

PQ(B, t)2 = 2mn
2m + |B| − 1

2m|B|
.

Hence by our assumption,

2mn
2m + |B| − 1

2m|B|
≥ Gλ

∑
t∈Fm2

PQ(B, t)2 ≥ Gλ
2r

(8λ)

λ2

22r

2m

2r
.

The number of bad matrices can then be bounded:

Gλ ≤ 2mn
2m + |B| − 1

|B|
8

λ

1

22(m−r) ≤ 2mn
8

λ

(
2m

|B|
+ 1

)
≤ 2mn

16

λ
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for m such that |B| > 2m. For all other matrices, we derive a number of collisions C ≤
λ2

22r
1

2m−r |B|
2 .

10.7. A provable variant of ColumnMatch

One iteration within ColumnMatch requires to pick three target vectors t
(1)
1 ∈ Fr12 and

t
(2)
1 , t

(2)
3 ∈ Fr22 . At each run this is done independently and at random. To obtain an algorithm

of provable running time and memory requirement, we repeatedly invoke ColumnMatch
with different independent target values t

(j)
i and add abort criteria that prevent the lists

or the number of collisions in the computation from growing unexpectedly high. The new
algorithm is called ProvableCM and performs the following.
Let Λ = 2γn be a parameter for a fixed constant γ > 0. We first choose independently

random target values 8Λ times. The targets are t
(1)
1,i ∈ F(r1)

2 and t
(2)
1,j , t

(2)
3,k ∈ Fr22 for 1 ≤

i, j, k ≤ 8Λ. For each set out of the (8Λ)3 targets, we call ColumnMatch(t
(1)
1,i , t

(2)
1,j , t

(2)
3,k)

until a solution is found. Every execution might abort if two many collisions occur or if one
of the lists exceeds its expected size. The abort happens if the expected value is exceeded by
more than a factor of Λ.
For this variant of ColumnMatch we can prove a complexity and success probability.

Theorem 10.2
For every γ > 0, the modified algorithm ProvableCM outputs a solution e ∈ Fk+`

2 of weight
p to Qe = s for a fraction of at least 1 − 60 · 2−γn randomly chosen Q ∈ F`×(k+`)

2 with
probability at least 1 − 3

e2
> 1

2 in time Õ
(
T (p, `; ε1, ε2) · 23γn

)
where T (p, `; ε1, ε2) is defined

as in (10.10).

Proof: The basic algorithm ColumnMatch performs three levels of repeated creation of
lists which it joins by a collision search as shown in figure 10.7.

. . .

t
(2)
1,j t

(2)
3,k

t
(1)
1,i

s

X2
./

X3
./

X1
./

Figure 10.7.: Illustration of different decomposition nodes.

The solution is found if for each join-node ./ at least one representation survives. It fails if
the bit-constraint is not satisfied in at least one node, if too many collisions occur or the lists
become too large.

141



Chapter 10. Improved information-set decoding

For every such node, we introduce a random variable Xi indicating whether the algorithm
fails at this point or not. The overall failure probability can then be upper bounded by using
the union bound: Pr [ProvableCM fails ] ≤

∑
Pr [Xi = 0]. We need to upper bound the

failure probability of every single node. For this purpose, we divide every Xi into three events
Xj
i and set Xi :=

∏
Xj
i . We now define these events for node X1 as an example.

• X1
1 represents the event that for at least one choice of the {t(1)

1,i } the solution e ∈ L has

at least one representation e = e1 + e2 with (Qe1)[r1] = t
(1)
1,i and (Qe2)[r1] = s[r1] + t

(1)
1,i .

• X2
1 represents the event that for at least one choice of the {t(1)

1,i } the size of lists L(1)
1

and L(1)
2 do not exceed the expected value by more than a factor of 2γn.

• X3
1 represents the event that for at least one choice of the {t(1)

1,i } the total number of
collisions C1 does not exceed its expected value by more than a factor of 2γn.

All these events depend on the structure of the matrix Q and we need to exclude some
pathological cases. We make use of the result in section 10.6. which we summarize:

1. For all but a 1
Λ−1 fraction of the matrices, the proportion of bad targets w.r.t. to the

event X1
i is smaller than Λ−1

Λ .

2. For all but a 2Λ
(Λ−1)2

fraction of the matrices, the proportion of bad targets w.r.t. to the
event X2

i is smaller than 1
2Λ .

3. For all but a 16
Λ fraction of the matrices, the proportion of bad targets w.r.t. to the

event X3
i is smaller than 1

4Λ .

One derives that the total fraction of matrices that lead to a fail in one node can be bounded
by

1

Λ− 1
+

2Λ

(Λ− 1)2
+

16

Λ
≤ 20

Λ
for Λ ≥ 7 .

The total fraction of bad Q’s for all three nodes is upper bounded by 60
Λ . Furthermore,

considering good Q’s, the proportion of bad targets per node is given by

Λ− 1

Λ
+

1

2Λ
+

1

4Λ
= 1− 1

4Λ

and hence we have

Pr [Xi = 0] = Pr [all 8Λ many t’s bad] ≤
(

1− 1

4Λ

)8Λ

≤ e−2 .

Eventually this yields

Pr [ProvableCM fails ] ≤ 3

e2
< 41%

for every good Q as stated in the theorem. Notice, that the worst-case running time of
ProvableCM is given by a total number of Λ3 = 23γn runs of ColumnMatch.
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10.7.1. Trade-off between time and memory

We can reduce the time of our provable algorithm by augmenting the memory. We allow
to increase the memory by a factor Λ = 2γn by changing the targets t

(2)
1 and t

(2)
3 each 8Λ

times. Note that this also changes the corresponding right targets t(2)
2 = t

(2)
1 + (t

(1)
1 )[r2] and

t
(2)
4 = t

(2)
3 + (t

(1)
2 )[r2], respectively. The list are of size S2 ·Λ and the cost for their creation is

augmented by the same factor. We join all elements found per target t(2)
1 with the elements

found for the corresponding target t(2)
2 . We proceed analogously for the 8Λ targets t(2)

3 . We
abort and choose a different target whenever the number of collisions or the lists are larger
than we expect. This results in lists at the first level of expected size S1 ·Λ and augments the
collisions search by Λ. The last join needs to perform a merge on all elements which costs

max(ΛS1, C
′
1, NSol)

where we expect that C ′1 ≈ C1Λ2. Due to the very few solutions (one or a constant number),
the number of collisions C1 is small in comparison to S1 and the cost of the last merge is
dominated by the size of the lists, S1. As long as we guarantee that Λ2C1 ≤ ΛS1, the algorithm
has a running time T · Λ2 using space S · Λ where T and S are defined in (10.10).
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Appendix A

Asymptotic approximations of
binomials

A.1. Entropy

In information theory entropy measures uncertainty associated to a random variable. The con-
cept was introduced by Shannon [Sha48] who quantified the expected value of the information
contained in a message sent over an unreliable channel.

Definition A.1 (Shannon entropy)
Let X be a discrete random variable that takes values in {x1, .., xn}. Let p(X) denote the
probability mass function that gives the probability that X takes value xi. The Shannon entropy
can be written as

Hq(X) = −
n∑
i=1

p(xi) logq p(xi) (A.1)

where q is the base of the logarithm.

The Shannon entropy is continuous and symmetric. It takes its maximal value if X is dis-
tributed uniformly. For q = 2 it is convention to denote H2 by H. Closely related is the
entropy function.

Definition A.2 (Entropy function)
Let q be an integer greater than 1. The q-entropy function, hq(α) : (0, 1] → R, is defined as
follows:

hq(α) = α logq(q − 1)− α logq(α)− (1− α) logq(1− α) . (A.2)

An interesting special case is the binary entropy function:

h(α) = −α log2(α)− (1− α) log2(1− α) .

The function hq(α) is continuous and increasing in the interval [0, 1 − 1/q] where we define
hq(0) = 0 and hq(1− 1/q) = 1. Figure A.1 shows the graph of h and h3.
The binary entropy function, h(p), calculates the uncertainty of the outcome of a biased

coin toss where heads has probability p and tails has probability 1 − p to come up. For a
fair coin (p = 1/2) the uncertainty is maximal. Let X be a random variable taking values in
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 1

 0.5  0.67  1

h3(α)

h(α)

Figure A.1.: Entropy function.

{0, 1} such that Prob(X = 1) = p and Prob(X = 0) = 1 − p. The Shannon entropy, H(X),
equals h(p).

A.2. Asymptotic bounds for binomials and sums of binomials

Let n, q and k be integers. Let Volq(n, k) denote the volume of a Hamming ball or radius k
in {0, 1, .., q − 1}. The volume equals

Volq(n, k) =
k∑
i=0

(
n

i

)
(q − 1)i

and can be bounded [Bar98, section 1.2] by use of the entropy function (A.2):

ckq
nhq(k/n) ≤

k∑
i=0

(
n

i

)
(q − 1)i ≤ qnhq(k/n)

for 0 < k/n ≤ (q − 1)/q and ck = 1/(
√

8k(1− k/n)). We can hence write

Volq(n, k) = O
(
qnhq(k/n)

)
.

The largest term of the sum is dominating in the asymptotic case and can thus be approx-
imated for large n as follows:(

n

k

)
≈

k∑
i=0

(
n

i

)
(q − 1)i = Õ

(
qnhq(k/n)

)
.
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A.2. Asymptotic bounds for binomials and sums of binomials

We will also need to approximate multinomial coefficients of the form(
n

sn, tn, (1− s− t)n

)
=

n!

(sn)!(tn)!((1− s− t)n)!

for 0 ≤ s, t ≤ 1. Using Stirling’s formula

n! =
√

2πn
(n
e

)n
(1 + o(1)) ,

we derive that (
n

sn, tn, (1− s− t)n

)
= Õ

(
2na(s,t)

)
where

a(s, t) := −s log2 s− t log2 t− (1− s− t) log2(1− s− t) .
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Appendix B

Octave code for optimisation

Octave code B.1: Helper functions
function y=xlog2(x)

if (x<=0)
y=0;

else
y=x*log(x)/log (2.0);

endif
endfunction

#asymptotic value for binom(n,x n)
function y=H(x)

y=-xlog2(x)-xlog2(1-x);
endfunction

#asymptotic value for binom(n x1,n x2)
function y=H2(x1 ,x2)
y=-xlog2(x2)-xlog2(x1-x2)+ xlog2(x1);

endfunction

#from dimension get minimum distance due to gilbert varshamov bound
#bisection algorithm , start with a=0 and b=0.5
function y=findDrec(k,a,b,e)

da=H(a);
db=H(b);
while(abs(da -db)>e)

testb=a+(b-a)/2;
testdb=H(testb);
if(testdb > 1-k)

b=a+(b-a)/2;
db=H(b);

else
a=a+(b-a)/2;
da=H(a);

endif
endwhile
y=a;

endfunction

Octave code B.2: Simple representation technique for ISD
#include helper functions
function y=ComplexityMMT(params ,w,k,info)

p=params (1);
l=params (2);

if ((l >=0)&&(p >=0)&&(p<=w)&&(l<=1-k)&&(p<=k+l)&&(1-k-l>=w-p))
lsize1=H2(k+l,p/2);
d=H2(p,p/2);

if ((d>lsize1 ))
y=10000;

else
Cost (1)= lsize1 -d;
Cost (2)=H2((k+l)/2,p/4);
Cost (3)=2* lsize1 -2*d-(l-d);
rep =H(w)-2*H2((k+l)/2,p/2)-H2((1-k-l),(w-p));
y=rep+max(Cost);
if (info)

w,k
rep
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Cost ,p,l,d
endif

endif
else

y=10000;
endif

endfunction
#_______________
#Input:
k = 0.46390
w = 0.061179
zze=[ 0.0064061 0.0278678]
ComplexityMMT(zze ,w,k,1)

#Output:
#rep = 0.032170
#Cost = 0.021462 0.013934 0.021462
#compl = 0.053632

Octave code B.3: Extended representation technique for ISD
#include helper functions
function y=ComplexityNew(params ,w,k,info)

p=params (1);
l=params (2);
e1=params (3);
e2=params (4);

if ((l >=0)&&(p >=0)&&(e1 >=0)&&(e2 >=0)&&(p<=w)&&(l<=1-k)&&(p+e1 <=k+l)&&(1-k-l>=w-p))
lsize1=H2(k+l,p/2+e1);
msize1=H2(p,p/2)+H2(k+l-p,e1);
lsize2=H2(k+l,p/4+e1/2+e2);
msize2=H2(p/2+e1,p/4+e1/2)+H2(k+l-p/2-e1,e2);

if ((msize1 >lsize1 )||( msize2 >lsize2 )||( msize2 >msize1 ))
y=10000;

else
Cost (1)=2* lsize1 -msize1 -l;
Cost (2)= lsize1 -msize1;
Cost (3)=2* lsize2 -msize2 -msize1;
Cost (4)= lsize2 -msize2;
Cost (5)= lsize2 /2;
mem=max(Cost(2),Cost (4));
y=H(w)-H2(k+l,p)-H2((1-k-l),(w-p))+max(Cost);
if info

rep=H(w)-H2(k+l,p)-H2((1-k-l),(w-p))
Cost
endif

endif
else

y=10000;
endif

endfunction

#_____________
#Input:
k = 0.44100
w = 0.13057
zze =[ 0.0546032 0.2074892 0.0105659 0.0015388]
ComplexityNew(zze ,w,k,1)

#Output:
#rep = 0.024011
#Cost = 0.077759 0.077061 0.077759 0.077759 0.065563
#compl = 0.101770

#_____________
#Input:
k=0.7577
w=0.04
zzb =[2.8582e-02 1.4312e-01 6.6287e-03 3.9670e-04]
ComplexityNew(zzb ,w,k,1)
#Output:
#rep = 0.0083409
#Cost = 0.058873 0.058612 0.058873 0.058873 0.042387
#compl = 0.067214
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Résumé

Cette thèse porte sur les techniques algorithmiques pour résoudre des instances uni-
formes du problème du sac à dos exact (subset sum) et du décodage à distance d’un
code linéaire aléatoire.
Le subset sum est une alternative aux problèmes utilisés classiquement en cryptogra-

phie (comme le problème de la factorisation et du logarithme discret). Il admet une
description simple et ne nécessite de réaliser qu’une somme de nombre entiers. De
plus, aucun algorithme quantique polynomial n’est connu pour résoudre ou approcher
ce problème. Il est possible de construire des fonctions à sens unique, des générateurs de
nombres pseudo aléatoires et des schémas de chiffrement à clé publique dont la sécurité
est basée sur la difficulté du problème dans le cas moyen.
Les problèmes de décodage peuvent être vus comme une version vectorielle du prob-

lème du subset sum. Plus particulièrement le problème du décodage borné dans un code
aléatoire, est à la base de plusieurs schémas cryptographiques. Il admet des schémas de
chiffrement à clé publique, de signature numérique, d’identification et des fonctions de
hachage.
Nous présentons différentes techniques algorithmiques génériques pour résoudre ces

problèmes. En utilisant la technique de représentation généralisée, nous obtenons un
algorithme pour le problème du subset sum dont la complexité en temps asymptotique
est diminuée d’un facteur exponentiel dans le pire des cas. Nous montrons que la même
technique s’applique dans le domaine des codes. Ce résultat permet d’améliorer le
décodage par ensemble d’information qui résout le problème de décodage dans un code
aléatoire. Le nouvel algorithme diminue la complexité en temps asymptotique d’un
facteur exponentiel.

Abstract

The focus of this thesis is an algorithmic technique to solve the random, hard subset-sum
problem and the distance-decoding problem in a random linear code.
The subset-sum problem provides an alternative to other hard problems used in cryp-

tography (e.g., factoring or the discrete logarithm problem). Its description is simple
and the computation of sums of integers is an easy task. Furthermore, no polynomial-
time quantum algorithm for solving general knapsacks is known. One can construct
one-way functions, pseudo-random generators and private-key encryption schemes from
the hardness assumption of the average-case problem. Also some cryptosystems based
on lattice problems are provably as secure as the difficulty of the average-case subset-
sum problem.
Decoding problems can be seen as a vectorial subset-sum problem. Of particular

interest is the bounded-distance-decoding problem in a random code. It permits public-
key encryption, digital signatures, identification schemes and hash-functions.
We present different generic algorithmic tools to solve the above problems. By use of

our extended representation technique, we obtain an algorithm of exponentially lower
asymptotic running time than previous approaches for the hardest case of a random
subset-sum problem. We show that the technique can be applied to the domain of
code-based cryptography. This results in improved information-set decoding that solves
the distance-decoding problem for random linear codes. The new algorithm is asymp-
totically faster by an exponential factor.
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